Boys, Girls and Mathematics

BEGINNING TO LEARN FROM THE GENDER DEBATE

by Robin Bevan

Introduction

Mathematics and the teaching of mathematics have been amongst the subjects of close interest within the continuing gender debate. The implications for Heads of Mathematics arise in grouping, in teaching styles and in establishing departmental expectations. It is vital, however, that any responses are properly informed. Researchers have examined factors that influence students' experiences of school mathematics, and have sought to uncover those which account for variations by gender. Here we will consider some of their findings and their explanations, with a view to informing the planning of mathematics teaching.

It is difficult to offer specific guidance: schools vary! Single sex and co-educational schools, comprehensive and selective schools – each has particular circumstances to address. Departmental leaders are encouraged to review their pupils’ performance data by gender, to interview their students to identify any particular perceptions they have of mathematics teaching, and to reflect after reading the evidence whether there might be some route to improvement.

Some Background

From the early 1980’s feminist analysis served to illuminate the extent of sexism in education. It highlighted the widespread problems, and the degree of disadvantage experienced by girls in school (Spender and Sarah, 1980). To some extent these revelations were not new. More potent, however, was the recognition at this time that, during the decade after Equal Opportunities legislation and despite all the earlier feminist commentary, gender equality in education remained a myth (Spender, 1982). The achievements of women were being left out of the curriculum. Boys were receiving privileged attention in the classroom (Kelly, 1988). It was striking how little had actually changed over the preceding years.

It is doubtful even now that the necessary transformation has occurred in education: whether in the curriculum, in the classroom, or in institutional frameworks. However, in the meantime, there has been extensive research, seeking to identify routes towards the more effective teaching of girls – and more recently boys. That research has suggested that the gender assumptions made by individual teachers ‘... strongly influence their specific judgements in relation to teaching and choice of curriculum materials’ (Abraham, 1995, p. 136). It is necessary to challenge teachers regarding their own preconceptions, and to promote informed dialogue surrounding these issues.

Dominant Themes

In considering the research, it is possible to identify a number of distinct and dominant themes. Each of these themes will be significant in addressing variations by gender. First is the relative attainment of boys and girls, in a variety of mathematical assessments under a variety of conditions. It is perhaps the very fact that differences by
gender have been reported which has served to motivate and legitimize subsequent studies. Recent studies make frequent appeal to the work of the Assessment of Performance Unit (APU, 1980-2; Joffe and Foxman, 1988), some elements of which are outlined below. The second theme relates to attitudes towards mathematics that appear to differ according to gender. It is difficult to separate the adoption of these attitudes from the diverse and powerful forces that dictate student expectation – the third theme, which has also received attention by researchers. More recent studies have illuminated how gender differences in mathematics can arise through variations in learning styles, in teaching styles and in the organization of learning.

Relative Attainment

An analysis of 98 studies of the differences in mathematics achievement between males and females shows that the average difference is very small and has been decreasing steadily.

(Friedman, 1989, p. 32)

Much of the concern that has existed regarding the relative attainment of boys and girls in mathematics can be traced back to the work of the Assessment and Performance Unit. The second of their secondary surveys reported: ‘Boys scored higher in 14 sub-categories (of mathematics) and the differences were significant in seven of them. The difference in modern algebra, where girls scored higher, was not significant ...’ (APU, 1981, p. 76). Further analysis, looking at several years of data, allowed a more secure generalization to be made, that ‘... boys are best, relative to girls, in the applied and practical areas – measures and rate and ratio – while girls do best relative to boys in computation with whole numbers and decimals and some aspects of algebra ...’ (Joffe and Foxman, 1984a, p. 26). However, although the overall results consistently supported these declarations, it was also true that the higher mean scores of the boys could be accounted for by the disproportionate number of boys in the top performance bands (APU, 1980). Not only that, but Joffe and Foxman (1984b) observed that a statistically significant sex difference arises in rating the enjoyment of mathematics, with 7% more girls opting to disagree with the statement: ‘I enjoy working on maths problems’. Whilst this variation relates specifically to tackling problems, overall enjoyment of mathematics reverses during the secondary school. ‘Overall girls at age 11 say that they enjoy mathematics slightly more than boys do. However, at age 15, the position is reversed with girls indicating that they enjoy the subject less.’ (op. cit., p. 8). Aspects of the secondary curriculum, and how it is taught, appear to be instrumental in this change of outlook.

If confidence varies by gender then so does enjoyment: Joffe and Foxman (1984b) observed that a statistically significant sex difference arises in rating the enjoyment of mathematics, with 7% more girls opting to disagree with the statement: ‘I enjoy working on maths problems’. Whilst this variation relates specifically to tackling problems, overall enjoyment of mathematics reverses during the secondary school. ‘Overall girls at age 11 say that they enjoy mathematics slightly more than boys do. However, at age 15, the position is reversed with girls indicating that they enjoy the subject less.’ (op. cit., p. 8). Aspects of the secondary curriculum, and how it is taught, appear to be instrumental in this change of outlook.

It does not help when seeking to address the decline in either confidence or enjoyment, to find subjects such as science and mathematics ‘... are rated as ‘masculine’ by pupils and preferred by boys; English, humanities, ... rated as ‘feminine’ and preferred by girls.’ (Arnot et al., 1998, p. 31). In this regard there has been little recorded change in the past decade. Fox et al. recorded two key findings in 1981, following a survey of American high school students. First they noted that more students believe boys are better than girls at maths; and, secondly, more boys than girls are likely to agree with the statement that ‘maths is a male domain’. Based upon their observations, they concluded that only through specific intervention could the effect of these attitudes be countered. Specifically they argued for the early identification and ‘tracking’ of the mathematically gifted as crucial to their later willingness to continue studying maths (Fox et al., 1981, pp. 197–8). This is an approach of particular relevance in promoting the confidence and interest of able girls.
Expectations

‘One of the most pervasive findings in the literature on sex differences is the lower expectations which females hold for their performance as compared with males.’

(Deaux, 1976, cited in APU, 1981, p. 103)

It would be a mistake to assume that attitudes towards mathematics arise solely as the result of school experiences, and classroom activity. In the study mentioned earlier Fox et al. (1981) sought to identify an accumulation of factors which ‘conspire’ to generate and reinforce the gender-specific expectations in mathematics.

Both the roles and the particular predisposition of parents serve to inform the attitudes embraced by pupils. Parents often have lower educational expectations, in general, for daughters than sons. Moreover, they tend to have a greater acceptance of low levels of achievement in maths for girls than boys. When considering future aspirations, parents are inclined to think of maths as a more appropriate career for boys than girls; and within the domestic situation help for mathematics arises more frequently sought from men than women. There is some evidence that both the careers advice and the counselling offered in relation to subject choice fail to redress this bias.

However, the outlook of the teacher remains a significant factor, and Fox et al. (1981) reported that this is not primarily a matter of the teachers’ sex, which seems to be less important than behaviour and attitude. Indeed teacher encouragement is claimed to have been of considerable importance to many mathematics students, and is particularly noted in the biography of female mathematicians. It is unfortunate then to note that, at the time of their study, many teachers saw maths as a masculine domain.

In the Classroom: Teaching and Learning Styles

‘Mathematics, as it is currently and widely taught, is not equally accessible to girls and boys and this appears to relate to preferences of pedagogy.’

(Boaler, 1997, p. 123)

Although substantial differences in performance have been discounted, and attitude differences attributed to extraneous sources; it is nonetheless critical to consider the influence of the classroom. The literature tends to focus upon the disadvantage experienced by girls in the mathematics classroom, but this serves to illuminate mathematics education for boys also. Drawing upon research (Gilligan, 1982; Belenky et al., 1986) in developmental psychology, Becker (1995) claims that girls have traditionally been denied access to success in mathematics because of the styles of learning that characterize their approach. It is argued that they tend to be ‘connected’ thinkers who require the exploration of context and interrelationships when encountering new mathematics. It is proposed further that traditional models of mathematics teaching have encouraged ‘separate’ ways of working: discrete topics, techniques and abstract development of the subject. Placed alongside evidence from other sources, this argument appears tenable.

Style of presentation is not alone in influencing learning style. Head (1995) has suggested that girls prefer cooperative, supportive working environments whereas boys work well in competitive, pressurized environments. Traditional models of pedagogy for more able students are then at variance with those apparently favoured by girls. Motivated by the view that neither inherent gender attributes nor the nature of mathematics itself could explain variations in attitude, Boaler summarizes the argument: ‘Where feminist researchers have diverged from the more general reformists is in their claim that school mathematics has traditionally disadvantaged girls, because of the way girls tend to think and work and the ways they come to know.’ (Boaler, 1997, p. 111).

This position is not new, and gains support from cognitive psychology. Drawing upon Pask (1976) and Holloway (1978), it is possible to mark a distinction in the learning of mathematics between ‘serialists’ and ‘holists’. Neither writer provides an explanation of the origins of a disposition to adopt one or other learning approach, but they do report that a disproportionate number of boys exhibit holistic tendencies. Furthermore it has been established that ‘...the level of uncertainty at which individuals are happy to work is a distinguishing characteristic between serialists and holists ...’ (Scott-Hodgetts, 1986, p. 74). A formal sequential teaching approach to mathematics not only relies upon frequent ‘excursions into unknown territory’, but also affords little opportunity to confirm dependencies between differing elements of the subject. The holistic learner is advantaged: he is more comfortable with the unknown, and more inclined to infer connections as they arise. In contrast the serialist is disadvantaged, as serialistic teaching doesn’t address the needs of the serialist! Moreover, this can be formulated into an argument concerning learning style by gender. ‘Because of the serialist nature of teacher input in the ... mathematics classroom, pupils who are predisposed to a serialistic approach are less likely to develop into versatile learners of mathematics than those inclined to adopt holistic strategies; the most successful mathematics students will generally be versatile learners; the existing evidence concerning difference in performance between girls and boys is consistent with there being a greater proportion of girls (than boys) with serialistic tendencies.’ (Scott-Hodgetts, 1986, p. 75).

This explanation of gender differences has received more recent support: ‘Boys show greater adaptability to more traditional approaches to learning which require memorizing abstract, unambiguous facts and rules that have to be acquired quickly. They also appear to be more willing to sacrifice deep understanding, which requires sustained effort, for correct answers achieved at speed.’ (Arnot et al., 1998, p. 28). Although such a traditional approach might appear to favour serialists, this will only be so in circumstances where the pace and style of the teaching permit consolidated understanding. If the sequence of ‘facts and rules’ appears arbitrary, the serialist suffers relative to the holist – notwithstanding any intrinsic mathematical connections understood, or even articulated, by the teacher.

This approach to gender differences serves to illuminate the differing needs of those who learn in different ways. It is cautionary to note, first, that Adey et al. (1998) identify a number of researchers who were unable to find significant gender differences in learning style. Secondly, ‘... that even if there were overall differences, the amount of overlap between the styles used by boys and girls would be so great
that it would be impracticable ... to treat boys and girls differently ...’ (p. 18) on this basis alone. Nonetheless, it remains the case that recent summaries of research, such as Arnot et al. (1998) present no evidence that the gender variations in learning style are reversed. We are left then with the reasonable understanding that when compared across the population boys and girls do have different learning styles; but that such variations are either small or negligible in any one sample.

However, other dispositions appear to vary with gender also: some to the advantage of girls. ‘There is evidence that girls are more attentive in class and more willing to learn. They do better than boys on sustained tasks that are open-ended, process-based, related to realistic situations, and that require pupils to think for themselves.’ (Arnot et al., 1998, p. 28). Whereas Boaler (1997) has noted in relation to a traditional approach: success appears to relate to pupils’ adaptability. The boys adapted to this style of teaching and learning – tending to rush through questions in order to achieve speed, if not understanding; whereas the girls generally did not.

Further research suggests that if children are brought up to obey rather than to challenge rules it might mean they are well prepared for maths in the primary school, but the attitude might hinder them later on (Buxton, 1981). Here again the ‘well-behaved’ serialist is disadvantaged, in comparison with the ‘provocative’ holist: the former learning through repetition and sequenced development. The latter predisposed to question the place of any new rules, and whether to obey rather than to challenge rules it might mean they are disaffected were very able girls, apparently because able girls are ‘... quite striking,.., at A level ... the gap between boys and girls is gradually closing. [Most notably there is a] cross-over which shows the boys ahead at the higher grades: which is important for entry into Higher Education.’ (p. 77).

In the Classroom: Grouping

‘... the nature of high set classes contributes to the disparity in attainment of girls and boys at the highest levels’. (Boaler et al., 1998, p. 5)

‘The requirement to work at an inappropriate pace is a source of real anxiety for many students, particularly girls ...’

(op. cit., p. 10)

It has already been noted that girls may prefer cooperative, supportive working environments whereas boys work well in competitive, pressurized environments (Head, 1995); but caution is required. Not all studies that have looked specifically for gender differences in learning styles have identified them: examples include Riding and Douglas (1993), and Kirby and Powell (1991). Although gender variations may exist in learning styles, any variation is small and measures the difference between the average disposition of each population. Any deviation between these averages is likely to be very much smaller than the variation within any one teaching group: whether compiled with reference to gender, ability, or arbitrarily (Adey et al., 1998).

The difficulties arising from the homogeneous grouping of students follow directly: ‘... setted lessons are often conducted as though students are not only similar but identical – in terms of ability, preferred learning style and pace of working.’ (Boaler et al., 1998, p. 7). Although Boaler’s research findings are derived from only a small number of schools, ability grouping remains particularly prominent in the teaching of mathematics at secondary level throughout the country. The principal claim emerging from her studies is that: ‘... it seems likely that the under-achievement and non-representation of girls at the highest levels is linked to the environments generated within top set classrooms ...’

Although gender variations may exist in learning styles, any variation is small and measures the difference between the average disposition of each population. Any deviation between these averages is likely to be very much smaller than the variation within any one teaching group: whether compiled with reference to gender, ability, or arbitrarily (Adey et al., 1998).

The difficulties arising from the homogeneous grouping of students follow directly: ‘... setted lessons are often conducted as though students are not only similar but identical – in terms of ability, preferred learning style and pace of working.’ (Boaler et al., 1998, p. 7). Although Boaler’s research findings are derived from only a small number of schools, ability grouping remains particularly prominent in the teaching of mathematics at secondary level throughout the country. The principal claim emerging from her studies is that: ‘... it seems likely that the under-achievement and non-representation of girls at the highest levels is linked to the environments generated within top set classrooms ...’

Although gender variations may exist in learning styles, any variation is small and measures the difference between the average disposition of each population. Any deviation between these averages is likely to be very much smaller than the variation within any one teaching group: whether compiled with reference to gender, ability, or arbitrarily (Adey et al., 1998).

The difficulties arising from the homogeneous grouping of students follow directly: ‘... setted lessons are often conducted as though students are not only similar but identical – in terms of ability, preferred learning style and pace of working.’ (Boaler et al., 1998, p. 7). Although Boaler’s research findings are derived from only a small number of schools, ability grouping remains particularly prominent in the teaching of mathematics at secondary level throughout the country. The principal claim emerging from her studies is that: ‘... it seems likely that the under-achievement and non-representation of girls at the highest levels is linked to the environments generated within top set classrooms ...’

Although gender variations may exist in learning styles, any variation is small and measures the difference between the average disposition of each population. Any deviation between these averages is likely to be very much smaller than the variation within any one teaching group: whether compiled with reference to gender, ability, or arbitrarily (Adey et al., 1998).

The difficulties arising from the homogeneous grouping of students follow directly: ‘... setted lessons are often conducted as though students are not only similar but identical – in terms of ability, preferred learning style and pace of working.’ (Boaler et al., 1998, p. 7). Although Boaler’s research findings are derived from only a small number of schools, ability grouping remains particularly prominent in the teaching of mathematics at secondary level throughout the country. The principal claim emerging from her studies is that: ‘... it seems likely that the under-achievement and non-representation of girls at the highest levels is linked to the environments generated within top set classrooms ...’

Although gender variations may exist in learning styles, any variation is small and measures the difference between the average disposition of each population. Any deviation between these averages is likely to be very much smaller than the variation within any one teaching group: whether compiled with reference to gender, ability, or arbitrarily (Adey et al., 1998).

The difficulties arising from the homogeneous grouping of students follow directly: ‘... setted lessons are often conducted as though students are not only similar but identical – in terms of ability, preferred learning style and pace of working.’ (Boaler et al., 1998, p. 7). Although Boaler’s research findings are derived from only a small number of schools, ability grouping remains particularly prominent in the teaching of mathematics at secondary level throughout the country. The principal claim emerging from her studies is that: ‘... it seems likely that the under-achievement and non-representation of girls at the highest levels is linked to the environments generated within top set classrooms ...’

Although gender variations may exist in learning styles, any variation is small and measures the difference between the average disposition of each population. Any deviation between these averages is likely to be very much smaller than the variation within any one teaching group: whether compiled with reference to gender, ability, or arbitrarily (Adey et al., 1998).

The difficulties arising from the homogeneous grouping of students follow directly: ‘... setted lessons are often conducted as though students are not only similar but identical – in terms of ability, preferred learning style and pace of working.’ (Boaler et al., 1998, p. 7). Although Boaler’s research findings are derived from only a small number of schools, ability grouping remains particularly prominent in the teaching of mathematics at secondary level throughout the country. The principal claim emerging from her studies is that: ‘... it seems likely that the under-achievement and non-representation of girls at the highest levels is linked to the environments generated within top set classrooms ...’

Although gender variations may exist in learning styles, any variation is small and measures the difference between the average disposition of each population. Any deviation between these averages is likely to be very much smaller than the variation within any one teaching group: whether compiled with reference to gender, ability, or arbitrarily (Adey et al., 1998).
References

Keywords: Gender; Attainment.

Author
Robin Bevan, Deputy Headteacher, King Edward VI Grammar School, Chelmsford, Essex CM1 3SX.

e-mail: RBevan@kegs.essex.sch.uk

SOFTWARE SOLUTIONS from QED!

Geometer's Sketchpad is simply the best dynamic geometry package available. Developed for the study of Euclidean, coordinate, transformational, analytic, & fractal geometry, it has evolved into a tool to explore algebra, trigonometry, calculus, art, science & more. GSP’s range of features enable students to:

* Accomplish Euclidean constructions
* Perform translation, rotation, & dilation by fixed, computed, & dynamic quantities
* Use analytic geometry to measure properties of a sketch in rectangular or polar co-ordinate systems
* Add labels & captions, change the visual properties of displayed objects, & create animations
* Encapsulate complex constructions in single steps with scripts, extending Sketchpads capabilities

Fathom – making statistics dynamic! Select data in one representation it is automatically selected in all representations. They stay in sync – drag one point and all change – ramming home how one point can influence different representations. And that’s just the start...! Both have comprehensive user guide & are available in PC/ Mac versions

FREE DEMO DISKS AVAILABLE OF ALL THE PRODUCTS LISTED

QED BOOKS & SOFTWARE

PRACTICAL & COST EFFECTIVE!

Efofxen Software

We’re impressed by practical software: here’s some that’s really cost effective. If you use Word then try them – you can download a 30 day trial version at www.efofxen.com!

FX Draw
Publication Quality Graphics for Maths Teachers
FX Draw is a Windows® based drawing package designed for the secondary mathematics teacher. The aim is to provide mathematics teachers with a tool that can draw any required mathematical diagram with a minimum amount of input from the teacher. FX Draw provides specialised tools for drawing angles, graphs, normal distribution curves, Venn diagrams and right triangles and also comes supplied with a gallery of over three hundred predrawn diagrams.

Single user just £65, Site licence £135

And Introducing...

FX Equation
Massively simpler to use than MS Equation – it does the work for you!

Single user just £24, Site licence £72

FX Stat
Cost effective tools for KS3 and KS4 –

Single user £24, site £72

FX Graph

RING, EMAIL OR FAX US NOW!

Email QED@talk21.com

Lo-Call 0345 402275 Fax 01494 793951

QED Books & Software

The MA web site www.m-a.org.uk

Mathematics in School, September 2001