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102.08 A method of evaluating  and ζ (2) ∫
 ∞

0

sin x
x

 dx

Introduction
I have recently beeninvolved in settingup a newDfE-funded resource

aimedat studentspreparingfor STEP* [1]. I cameacrossan interesting
question while trawling through the STEP data base [2] for suitable
material. It is from 1998and IamsurprisedthatI failed to noticeat thetime
that only a few more calculationsare neededto provide a rather simple
evaluation of , expressed as an infinite sum:ζ (2)

ζ (2) = ∑
∞

n = 1

1

n2
. (1)

The calculation involves the integral

∫
 ∞

0

sinx

x
 dx, (2)

thevalueof which is well-known;however,it wasa pleasantsurprise†

to find that it canbe evaluatedby exactly the samemethodas is usedhere
for .

(1
2π)

ζ (2)
The methodinvolvessumminga telescopingseriesand estimatingthe

value of an integral asymptotically. I don't supposethe use of these
techniquestogetherto evaluate is new.In fact, I expectthat theorigin
of theSTEPquestionlies in this result,but unfortunatelyI cannotremember
who setthequestionor, if it wasme,whereI got it from. I havenot found
exactly this methoddescribedin any of the usualplaces.‡ It is a concise,
rigorous but elementary, evaluation of  so it seemed worth an airing.

ζ (2)

ζ (2)
Some14 methodsof evaluating are given on Robin Chapman's

website[3], themethodmostcloselyrelatedto theonedescribedherebeing
number12, which startswith an identity of theFejérkernel. If Chapman's
websitewereupdated,it would no doubt includethe ratherelegantmethod
of Gleb Glebov [4] and someinterestingadditionsto the double integral
method[5, 6]. It would alsoincludethevery neatproof, relying on a mean
value theorem,given by Moreno [7]. I thank the refereefor drawing my
attentionto Moreno'spaper,not leastbecauseit hasno fewer than85 useful
references.

ζ (2)

No review would be completewithout Timothy Marshall'sproof [8],
which mustsurelybetheshortestpossible.You just substitute into
the identity

z = eiπ

∑
∞

n = −∞

1

(ln z + 2πin)2
=

z

(z − 1)2
.

* SixthTermExaminationPapersaretheexaminations,nowonly in mathematics,
usedby someUK universitiesas a basis for conditional offers for students
applying to study mathematicsor, occasionally,other mathematicalsubjects;
see http://www.stepmathematics.org.uk

† A surprise to me; some readers will have come across it before. See Appendix C.
‡ But see Appendix C.



NOTES 115

The proof is essentiallytwo lines, sincethe aboveidentity canbe obtained
essentially by pure thought — though that requires a fairly solid
understanding of complex analysis.

Fortheevaluationof theintegral(2) which,asI mentioned above,arises
as abonusto theevaluationof , thereareof coursevery many methods.
Nick Lord [9] recentlydid a greatservicein drawingattentionto two lovely
articlesby G. H. Hardy [10, 11] in this journal in which Hardyscoresthe
various methodsknownto him accordingto the level of analyticalintricacy
required to justify them. Some of these have echoesof the method
describedhere,but the closestseemsto be Dr Dixon's methodto which
Hardyawardsthehighestmarkfor analyticalintricacy,anhonourhesurely
would not havebestowedon the rather simplejustificationsrequiredfor the
evaluation given in this article.

ζ (2)

The STEP question
This is theSTEPquestion,which appearsasquestion4 onSTEPPaper

II, 1998 (with replacedby to improve the typography,and a slight
infelicity* in the definition of  removed):

x 2x
In

The integral  is defined byIn

In = ∫
1
2π

0
(π − 4x) sin((2n + 1) x) cosecx dx, (3)

where is a non-negativeinteger. Evaluate for ,
and hence evaluate  leaving your answer in the form of a sum.

n In − In − 1 n ≥ 1
In

Remembering that

sinA − sinB = 2 cos(1
2 (A + B)) sin(1

2 (A − B)) (4)

we find that

In − In − 1 = ∫
 12π

0
2(π − 4x) cos2nx dx.

Integration by parts and a further integration gives

In − In − 1 =









(5)

4

n2
for  n odd,

0 for  n even.

Thus, by telescoping,

In = I0 + ∑
n

k odd

4

k2
,

* Spotted by the referee.
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where the sumis over all odd positive integersless than or equal to .
However 

n

I0 = ∫
 12π

0
(π − 4x)dx = 0,

so 

I2n + 1 = ∑
n

k = 0

4

(2k + 1)2
(6)

and by (5). Thesolutionto theSTEPquestionis now complete:
perhapsnot quiteworth full marksunderexaminationconditions,in view of
the lack of detail in the integration by parts. 

I2n = I2n − 1

The connectionwith arisesfrom the following elementarybut
rathersatisfyingresult* . Taking the odd andeventermsof (1) separately,
and starting from (6), we have

ζ (2)

1
4 lim

n→ ∞
In = ∑

∞

k =0

1

(2k + 1)2
= ζ (2) − ∑

∞

k =1

1

(2k)2
= ζ (2) −1

4ζ (2) = 3
4ζ (2),

which leads to

3ζ (2) = lim
n → ∞

In.

In order to obtain the famous it remainsonly to show that

.

ζ (2) =
π2

6

lim
n → ∞

In =
π2

2
This limit mustexist (sincewe know that the sumfor converges)

despitethe fact that the limit as of the integrand of certainly
doesn'texist: the integrandjust oscillatesfasterandfaster. However,these
rapidoscillationsarethe key: themoreoscillationsthat arepackedinto the
fixed intervalof integration,themorenearlyexact isthecancellationof the
positive and negative parts of the integrand. The result of the rapid
oscillationis that thecontributionto theintegralfrom mostof the interval is
negligible. As is sooftenthecasein asymptoticanalysis,thepropertyof the
integrandthat createsproblemsfor approximationof the integral (by the
trapezium rule, for example) is exactly the property that makes the
asymptotic estimation of the integral tractable.

ζ (2)
n → ∞ In

An estimation lemma
In orderto evaluate we usethe following standardlemmafrom

asymptotic analysis, which is, in fact, an easy case (becauseof the
restrictions on ) of the Riemann-Lebesgue lemma [12].

lim
n → ∞

In

g (x)

* A similar resultgivesa quick andeasyproof of thedivergenceof theharmonic
series (i.e. the non-existence of ); see Appendix B to this article.ζ (1)
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Lemma:  Let

Jm = ∫
 b

a
g (x) sinmx dx (7)

where is any functionwith continuousfirst derivativeand and are
finite.  Then  as . 

g (x) a b
Jm → 0 m → ∞

Proof: This hardly needsproving: a sketchof the rapidly oscillatingsine
with relatively slowly varying amplitude is convincing. However,
integrationby partsalsodoesthetrick ratheruninterestingly,andthis formal
proof of our lemma is relegated to  Appendix A to this article.

g (x)

Evaluation of lim
n → ∞

In

Evenwithout taking the limit , the integraldefinition (3) for
looks a bit delicate:for any given , the cosecin the integranddivergesas
the lower endpointof the integral is approached. However, for close
enough to0, the implied ratio of sinesin the integrandis, to lowestorder,
just theratio of their arguments,which is finite at . This argumentis
not rigorous becauserigorous argumentis not required: it is clear that
nothingcango wrongat theendpointsof the integral. However,if we were
keen on this sort of thing, we could define a function  by 

n → ∞ In

n
x

x → 0

h

h (x) =








sin((2n + 1) x) cosecx for 0 < x ≤ 1
2π

2n + 1 for x = 0

andshowthat it is continuous. We could thenusestandardresultsto infer
that is integrableandnot, after all, particularlydelicateasan
integrand.

(π − 4x) h (x)

In order to use our lemma, we write  in the formIn

In = ∫
1
2π

0
f (x) sinmx dx, (8)

where  and .m = 2n + 1 f (x) = (π − 4x) cosecx
Our lemmacannotbeapplieddirectly to because in equation(8)

is not even bounded at , let alone continuously differentiable.
However,if we changedthe lower limit in the integral from 0 to , where

, our lemmawould apply,andthenewintegralwould tendto 0
in the limit . This showsthat the dominantcontribution to the
integralin this limit comesfrom theneighbourhoodof . For small ,
we have

In f (x)
x = 0

In a
0 < a < 1

2π

m → ∞
x = 0 x

f (x) =
π − 4x

x − 1
6x3 +  …

=
π − 4x

x
 (1 + 1

6x2 +  … )

wherethe bracketedexpansionconvergesfor (i.e. up to the next
zeroof ). Accordingly, we subtractthe badbehaviourat the origin by
writing (trivially)

| x | < π
sinx
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In = ∫
 12π

0 (f (x) −
π

x ) sinmx dx + ∫
 12π

0

π

x
sinmx dx. (9)

The idea is to useour lemmaon the first integralandevaluateexactly the
second, simpler, integral in the required limit .m → ∞

The first of the integralsin equation(9) satisfiesthe conditionsof our
lemma, so it tends to 0 as  and hence as . m → ∞ n → ∞

Althoughtheintegrandof thesecondof thetwo integralsin equation(9)
is well behavedat , we againcannotapply our lemma,because is
badat . However,we can evaluatethe integral exactly in the limit

.  Setting  gives

x = 0 π
x

x = 0
m → ∞ u = mx

∫
 12mπ

0

π sinu

u
 du.

Now we take the limit  and use the familiar resultm → ∞

∫
 ∞

0

sinu

u
 du =

π

2
, (10)

and we are done: .3ζ (2) = lim
n → ∞

In = 1
2π2

Theintegralin equation(10), which looks so innocuous,is surprisingly
tricky to evaluateby elementarymeans. It is not even obvious that it
converges. Methods of evaluating it, some requiring apparentlymore
complicated integrals such as

I (α) = ∫
 ∞

0

sinu e−αu

u
 du,

haveoftenbeendiscussedin The Mathematical Gazette. In manycases,it is
necessary to exchange the order of limiting processes.  For example,

∫
 ∞

0

sinu

u
 du = ∫

 ∞

0
lim

α → 0

sinu e−αu

u
 du =

??
lim

α → 0
∫

 ∞

0

sinu e−αu

u
 du.

It is for such exchanges,somerequiringquite difficult analysis,that Hardy
awardshis scoresin thepapers[10, 11] referredto in theintroduction. With
our rather simple lemma, we can avoid this sort of tricky analysis.

Let 

Kn = ∫
 12π

0
sin((2n + 1) x) cosecx dx. (11)

Using the identity (4), we find that

Kn = Kn − 1 =  …  = K0 =
π

2
. (12)

Again setting , we obtain (compare (9))m = 2n + 1

Kn = ∫
 12π

0
(cosecx −

1

x ) sinmx dx + ∫
 12π

0

1

x
sinmx dx.

Using our lemma, we see that the first of these integrals tends to 0 as
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, as before.  Thenm → ∞

π

2
= Kn = lim

n→ ∞
Kn = lim

n→∞
∫

 12π

0

sinmx

x
 dx = lim

n→ ∞
∫

 12mπ

0

sinu

u
 du = ∫

 ∞

0

sinu

u
 du,

which is whatwe want. Note: no exchangeof orderof limiting processes
was used!

Appendix A: Proof of our lemma
Referring to equation (7), we have

Jm = −
1
m

(g (b) cosmb − g (a) cosma) +
1
m ∫

 b

a
g′ (x) cosmx dx. (13)

Thefirst of thesetwo termsclearly tendsto 0 as , so we only need
to boundtheintegralandwe aredone. By astandardresultfor integrals,we
know that 

m → ∞

|∫
 b

a
g′ (x) cosmx dx| ≤ ∫

 b

a
|g′ (x) cosmx| dx.

Furthermore,

∫
 b

a
|g′ (x) cosmx| dx ≤ ∫

 b

a
|g′ (x)| |cosmx| dx ≤ ∫

 b

a
|g′ (x)|  dx ≤ (b − a) G,

where is thelargestvalueof on theinterval . This is certainly
bounded as a function of  since it does not depend on .

G |g′ (x)| [a, b]
m m

Thus  as . Jm → 0 m → ∞

Appendix B: Proof that the harmonic series diverges
This proof by contradictionis not new, but it is probablynot widely

known.*  
Assuming that the series converges, let

ζ (1) = ∑
∞

n = 1

1

n
.

Decomposing into odd and even terms, we have

ζ (1) = ∑
∞

k = 1

1
2k − 1

+ ∑
∞

k = 1

1
2k

> ∑
∞

k = 1

1
2k

+ ∑
∞

k = 1

1
2k

> ζ (1) ,

which gives the contradiction.The only possibleconclusion is that the
convergence assumption was incorrect.

* Therefereehassuppliedan enjoyablereference[13] which givesa list of proofsof
the divergence of the harmonic series; the proof given here is number 8 out of 20.
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Appendix C: Some contributions from the referee
In addition to somehelpful correctionsand suggestions,including an

application of the method presented here to the integral 

∫
1
2π

0

sin2 nx

sin2 x
 dx

leading to the result , the referee made the following

observation.  If we split up my integral , giving
∫

1
2π

0

sin2 t

t2
 dt = 1

2π

In

In = πKn − ∫
1
2π

0
4x sin((2n + 1) x) cosecx dx, (14)

where is definedin equation(11), we can usetheevaluationof given
in (12) toget therequired , thenuseour lemmaimmediatelyto dispose
of the integralin (14) in the limit . The refereethennotesthat this
is essentiallythe proof given by Daniel Giesyin reference[14], of which I
was unaware. Had I unearthedGiesy'sproof in my, as I thought, rather
thoroughsearchof the literatureI would perhapsnot haveembarkedon my
own contributionto this well-ploughedbut fertile field. However,I do think
theasymptoticapproachis justa bit different from whatalreadyexistsin the
literature and is therefore worth recording. 

Kn Kn
1
2π2

n → ∞

The refereealsoobservesthat the Riemann-Lebesguelemma,a simple
caseof which is thebasisof this approach,is alsothe (not usuallyexplicitly
stated)basisof themanyevaluationsof which useFourierseries.This
is of coursetrue: theFourierinversiontheoremandParseval'stheoremmake
use of the Riemann-Lebesgue lemma.

ζ (2)

Finally, the refereedrew my attentionto papers[15] and [16] in The
Mathematical Gazette, which mayhave beenthe inspirationfor theoriginal
STEP question. 
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