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102.08 A method of evaluating §(2) and f: S—ZX dx

Introduction

| have recently beemvolvedin settingup a new DfE-funded resource
aimedat studentspreparingfor STEP [1]. | cameacrossan interesting
question while trawling through the STEP data base [2] for suitable
material. It is from 1998and lamsurprisedhatl failed to noticeatthetime
that only a few more calculationsare neededto provide a rather simple
evaluation of; (2), expressed as an infinite sum:
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@ =2 (1)
n=1 n
The calculation involves the integral
J-°° sinx dx. 2)
0 X

the valueof which (47) is well-known; however,it wasa pleasansurprisé
to find thatit canbe evaluatedoy exactly the samemethodasis usedhere
for ¢ (2).

The methodinvolves summinga telescopingseriesand estimatingthe
value of an integral asymptotically. | don't supposethe use of these
techniquegogetherto evaluateg (2) is new.In fact, | expectthatthe origin
of the STEPquestionies in this result,but unfortunately cannotremember
who setthe questionor, if it wasme,wherel got it from. | havenot found
exactly this methoddescribedn any of the usualplacest It is a concise,
rigorous but elementary, evaluationfof2) so it seemed worth an airing.

Some14 methodsof evaluating¢ (2) are given on Robin Chapman's
website[3], the methodmostcloselyrelatedto the onedescribecherebeing
numberl2, which startswith anidentity of the Fejérkernel. If Chapman's
websitewere updated,t would no doubtinclude the ratherelegantmethod
of Gleb Glebov [4] and someinterestingadditionsto the doubleintegral
method[5, 6]. It would alsoincludethe very neatproof, relying on amean
value theorem,given by Moreno [7]. | thank the refereefor drawing my
attentionto Moreno'spaper,not leastbecausét hasno fewerthan85 useful
references.

No review would be completewithout Timothy Marshall's proof [8],
which mustsurely bethe shortespossible. You just substitutez = €7 into
the identity
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(Inz + 27in?2  (z - 1)%

n=—co

Sixth Term ExaminationPapersarethe examinationspow only in mathematics,
usedby some UK universitiesas a basisfor conditional offers for students
applying to study mathematicsor, occasionally,other mathematicalsubjects;

see http://www.stepmathematics.org.uk

T A surprise to me; some readers will have come across it before. See Appendix C.
*  But see Appendix C.



NOTES 115

The proofis essentiallytwo lines, sincethe aboveidentity can be obtained
essentially by pure thought — though that requires a fairly solid
understanding of complex analysis.

Forthe evaluationof theintegral(2) which,asl mentioned abovegrises
as abonusto the evaluationof £ (2), thereareof coursevery many methods.
Nick Lord [9] recentlydid a greatservicein drawingattentionto two lovely
articlesby G. H. Hardy [10, 11] in this journal in which Hardyscoresthe
various method&nownto him accordingto the level of analyticalintricacy
required to justify them. Some of these have echoesof the method
describedhere, but the closestseemsto be Dr Dixon's methodto which
Hardy awardsthe highestmarkfor analyticalintricacy,an honourhe surely
would not havebestowedn the rather simplgustificationsrequiredfor the
evaluation given in this article.

The STEP question

Thisis the STEPquestionwhich appearsas questiord on STEPPaper
II, 1998 (with x replacedby 2x to improve the typography,and a slight
infelicity” in the definition ofl , removed):

The integral,, is defined by

I, = '[Z”(n — 4x) sin((2n + 1)x) cosecx dx, ©)

wheren is a non-negativeinteger. Evaluatel, — 1,_; for n > 1,
and hence evaluatgleaving your answer in the form of a sum.

Remembering that
sinA — sinB = 2 cos(3(A + B)) sin(3(A - B)) (4
we find that

1

Ih = lho1 = J.OZHZ(n — 4x) cos2nx dx.

Integration by parts and a further integration gives

In - In—l =

4
e for n odd ®

0 for n even.

Thus, by telescoping,

*

Spotted by the referee.
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where the sumis over all odd positive integersless than or equalto n.
However

ly = j:(n _ 4x)dx = O,

SO

n
4
lane1 = go a1 17 (6)

andl,, = I, _1 by (5). Thesolutionto the STEPquestionis now complete:
perhapshot quite worth full marksunderexaminationconditions,in view of
the lack of detail in the integration by parts.

The connectionwith ¢ (2) arisesfrom the following elementarybut
rathersatisfyingresult. Taking the odd and eventermsof (1) separately,
and starting from (6), we have

. S 1 B B - 1 n 3
pimin= Y o =@ L Gt HR=LQ.
which leads to
32 = lim I,

2
In order to obtain the famousg (2) = % it remainsonly to show that
liml, = n_z
hoe 2

This limit mustexist (sincewe know thatthe sumfor ¢ (2) converges)
despitethe fact that the limit as n — <o of the integrand of I,, certainly
doesn'texist: the integrandjust oscillatesfasterandfaster. However,these
rapid oscillationsarethe key: the more oscillationsthat are packedinto the
fixed interval of integration,the more nearlyexact isthe cancellationof the
positive and negative parts of the integrand. The result of the rapid
oscillationis thatthe contributionto theintegralfrom mostof the intervalis
negligible. As is sooftenthe casein asymptoticanalysisthe propertyof the
integrandthat createsproblemsfor approximationof the integral (by the
trapezium rule, for example) is exactly the property that makes the
asymptotic estimation of the integral tractable.

An estimation lemma
In orderto evaluatelim I,, we usethe following standardemmafrom

n—> oo

asymptotic analysis, which is, in fact, an easy case (becauseof the
restrictions org(x)) of the Riemann-Lebesgue lemma [12].

* A similar resultgivesa quick andeasyproof of the divergenceof the harmonic
series (i.e. the non-existenceZdfl)); see Appendix B to this article.
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Lemma: Let

b
Jn = J. g(x) sinmx dx @)

whereg(x) is any functionwith continuousfirst derivativeanda andb are
finite. ThenJ, —» 0asm — o,

Proof: This hardly needsproving: a sketchof the rapidly oscillating sine
with relatively slowly varying amplitude g(x) is convincing. However,
integrationby partsalsodoesthetrick ratheruninterestinglyandthis formal
proof of our lemma is relegated to Appendix A to this article.

Evaluation of lim 1,

nN— oo

Evenwithout taking the limit n — <o, theintegral definition (3) for I,
looks a bit delicate:for any given n, the cosecin the integranddivergesas
the lower endpointof the integral is approached. However, for x close
enough to0, the implied ratio of sinesin the integrandis, to lowestorder,
justtheratio of their argumentsyhichis finite atx — 0. Thisarguments
not rigorous becauserigorous argumentis not required: it is clear that
nothingcango wrong at the endpointsf the integral. However,if we were
keen on this sort of thing, we could define a functidoy

hx) = sin((2n + 1)x) cosex for0 < x < 37
S l2n+ 1 forx = 0

andshowthatit is continuous. We could thenusestandardesultsto infer
that(z — 4x) h(x) is integrableandnot, after all, particularlydelicateasan
integrand.

In order to use our lemma, we wrligin the form

I, = Iznf(x) sinmx dx, (8)

wherem = 2n + 1andf (X) = (7 — 4X) cosec.

Our lemmacannotbe applieddirectly to I, becausd (x) in equation(8)
is not even boundedat x = 0, let alone continuously differentiable.
However,if we changedhelowerlimit in theintegrall, from 0 to a, where
0 < a < 3m, ourlemmawould apply,andthe newintegralwould tendto O
in the limit m — oo. This showsthat the dominantcontributionto the
integralin this limit comesfrom the neighbourhoodf x = 0. Forsmallx,
we have

T — 4X T — 4X (

f(x) = < =

1+ L2+ ...
- &+ X E )

wherethe bracketedexpansiorconvergesor |x| < z (i.e. up to the next
zeroof sinx). Accordingly, we subtractthe bad behaviourat the origin by
writing (trivially)
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1z b
Ih = _f: (f(x) - J;T) sinmx dx + f; gsindeX. )

Theideais to useour lemmaon the first integral and evaluateexactly the
second, simpler, integral in the required limit— oo,

Thefirst of the integralsin equation(9) satisfiesthe conditionsof our
lemma, so it tends to 0 a3 — < and hence as — co.

Althoughtheintegrandof the secondf the two integralsin equation(9)
is well behavedat x = 0O, we againcannotapply our lemma,becauset is
badat x = 0. However,we can evaluatethe integral exactlyin the limit
m — oo, Settingu = nx gives

du.

J-%mﬂ 7 sinu
0 u
Now we take the limin — o and use the familiar result
—du = —, 10
0o u 2 (10
and we are don& (2) = lim |, = 372
n— oo

J»msinu 4

Theintegralin equation(10), which looks so innocuousjs surprisingly
tricky to evaluateby elementarymeans. It is not even obvious that it
converges. Methods of evaluatingit, some requiring apparently more
complicated integrals such as

<sinue ™

| (a) = j > = du,

0 u

haveoftenbeendiscussedn The Mathematical Gazette. In manycasesit is
necessary to exchange the order of limiting processes. For example,
= sinu © sinug™ 7o <sinue™
f —du=J. lim ———du = Ilmf _—
0 u 0 40 u a—0°0 u
It is for such exchangesomerequiringquite difficult analysis,that Hardy
awardshis scoresn the paperd10, 11] referredto in theintroduction. With
our rather simple lemma, we can avoid this sort of tricky analysis.

Let

du.

K, = '[Oj” sin((2n + 1)x) cosex dx. (11
Using the identity (4), we find that
JT
Kn = Kn_]_ = ... = Ko = E (12)

Again settingm = 2n + 1, we obtain (compare (9))
a4 AN 1
Ky = _[2 (coseo< - —) sinmx dx + _[2 — sinnmx dx.
0 X 0 X

Using our lemma, we seethat the first of theseintegralstendsto O as
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m — oo, as before. Then

T ) ) 3 SinmX ) smu smu
§=Kn=I|mKn=I|mJ. dx=I|mf _[

N—>eo n—ev0 X n—>eo

which is whatwe want. Note: ho exchangeof orderof limiting processes
was used!

Appendix A: Proof of our lemma
Referring to equation (7), we have

1 1 ¢b
Im = —a(g(b) cosmb — g(a) cosma) + = fag (X) cosmx dx. (13)

Thefirst of thesetwo termsclearlytendsto 0 asm — <o, sowe only need
to boundtheintegralandwe aredone. By a standardesultfor integrals,we
know that

b b
U g (%) cosmxdx‘ < J g (x) cosmx dx.
a a
Furthermore,
b b b
f |’ (x) cosmx| dx < f |’ ()| |cosmx| dx < f lg (0| dx < (b — a)G,
a a a

whereG is thelargestvalueof |¢f (x)| ontheinterval[a, b]. Thisis certainly
bounded as a function of since it does not depend on

ThusJ,, - 0asm — oo,

Appendix B: Proof that the harmonic series diverges

This proof by contradictionis not new, but it is probably not widely
known?

Assuming that the series converges, let

=1
£ = 2—

Decomposing into odd and even terms, we have

3

- 1 - 1 - o 1
@(1)=k§,l—2k_l+kg,lﬂ>k2,12k 2,2—>C(1),

which gives the contradiction. The only possible conclusionis that the
convergence assumption was incorrect.

*

Therefereehassuppliedan enjoyablereferenceg13] which givesa list of proofsof
the divergence of the harmonic series; the proof given here is number 8 out of 20.
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Appendix C: Some contributions from the referee
In additionto somehelpful correctionsand suggestionsincluding an
application of the method presented here to the integral

j-%ﬂ sin? nx
0 Sin?x
4 sm2t

leadingto the resuItJ. dt = ix, the referee made the following

observation. If we split up my integral giving

1z
I, = 7K, - JE 4x sin((2n + 1)x) cosecxdx, (14

whereK, is definedin equation(ll) we can usethe evaluationof K, given
in (12) toget therequiredi=?, thenuseour lemmaimmediatelyto dispose
of theintegralin (14) mthellmlt n — oo. Therefereethennotesthat this
is essentiallythe proof given by Daniel Giesyin referencg14], of which |
was unaware. Had | unearthedGiesy'sproof in my, as| thought, rather
thoroughsearchof theliteraturel would perhapsiot haveembarkedn my
own contributionto this well-ploughedbut fertile field. However,| do think
theasymptoticapproachis justa bit differentfrom whatalreadyexistsin the
literature and is therefore worth recording.

The refereealsoobserveghat the Riemann-Lebesgukemma,a simple
caseof which is the basisof this approachijs alsothe (not usuallyexplicitly
stated)basisof the manyevaluationsof £ (2) which useFourierseries. This
is of coursetrue: the FourierinversiontheoremandParseval'sheoremmake
use of the Riemann-Lebesgue lemma.

Finally, the refereedrew my attentionto papers[15] and[16] in The
Mathematical Gazette, which mayhave beerthe inspirationfor the original
STEP question.
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