Primary Mathematics Challenge - November 2022

Answers and Notes

These notes provide a brief look at how the problems can be solved. There are sometimes many ways of approaching problems - not all can be given here. Suggestions for further work based on some of these problems are also provided.

P1	D	(111)	P2	A(1)
		()		(-)

1	Α	3	A 5p, a 2p and a 1p will give the smallest number of coins to make 8p.		
2	Α	80p	25 miles cost 20p so 100 miles will cost 80p.		
3	С	15	There are 5 cats eating 3 treats each which gives 15 treats each day.		
4	Е	west	Turning 180° from east will change Chippy to be flying west.		
5	B	3 mph	Ringa takes 20 minutes to cycle 1 mile. In one hour, at this speed, she would		
U	D	5 mpn	cycle 3 miles		
6	С	6	We need 6 small equilateral triangles to fill the sphiny		
7	R	3	One parrot one cat and one dog have a total of 10 legs. The Pet Rescue Home has		
,	D	5	the same number of each animal. With 30 legs altogether, there must be 3 of each		
			animal.		
8	С	4 sec	The gap between the spider and the slug closes at $7 + 4 = 11$ cm/sec. As		
			they are 44 cm apart, it will take 4 seconds for the gap to close.		
			But how fast can slugs go? 4 cm/sec does seem fast for a slug!		
9	D	27	The teacher has 9 pairs of socks, and he wears each for three days. So		
			he will need to wash them all after $9 \times 3 = 27$ days.		
10	D	24 cm	In each triangle, the length of the two full lines adds up to twice the		
			length of the dotted side of the triangle. The dotted line is 12 cm long		
			so the sum of the lengths of the full lines is 24 cm.		
11	E	5 for the	If you are paying the price of 2 Nibletts tm , the best offer is		
	р	price of 2	to ask for 5 packets.		
12	С	5	Move cars A and B to the left. Move car C		
			up to the car park edge. Move car D to the		
			left, and car E down. You can now drive		
			your car out of the car park.		
12	п	0	The payt year for the digit total to be 6 is 2021. This is in 0 years		
13 14	D C	3	Four space bars would contain 30 g of sugar. Too much Three spack		
14	U	5	bars will contain 22.5 g which is within this limit		
15	Δ	f 50 for	f_{50} for 6 months: f_{100} a year f_{26} for 3 months: f_{104} a year		
10	6	months	f 18 for 2 months: f 108 a year Annual payment of f 120; f 120 a year		
	0	, montilis	f 9 a month: 9 x $12 = f.108$ a year. Response A is the cheapest		
16	D	1 hour	The first train, travelling at 50 mph will travel 150 miles in three hours.		
-			So the high speed train, at 150 mph, will take one hour.		
17	Ε	120	The only option which is both a multiple of 4 and a multiple of 5 is 120.		
18	B	38 m	The length of the top rectangle must be $42 \div 6 = 7$ m. The length of the		
			lower rectangle must be $20 \div 4 = 5$ m. The length of the joined sides is 3 m.		
			Adding the lengths of the sides from the top going clockwise gives:		
			7 + 6 + 2 + 4 + 5 + 4 + 4 + 6 = 38 m.		
19	D	1	The fractions look horrendous but they simplify to $1/3 + 1/2 + 1/6 = 1$.		
20	D	1477	24 minutes is $24 \times 60 = 1440$ seconds. So Budimir held his breath for		
			1440 + 37.36 = 1477.36 seconds which is 1477 seconds to the nearest		
			second.		

	top left triangle is $\frac{1}{2} \times 5 \times 7 = 17.5 \text{ cm}^2$. The area of the bottom triangle is $\frac{1}{2} \times 15 \times 3 = 22.5 \text{ cm}^2$. The area of the rectangle is $15 \times 8 = 120 \text{ cm}^2$. So the area of the shaded triangle is $120 - 32 - 17.5 - 22.5 = 48 \text{ cm}^2$.
198 cm	The three lengths of wood across the whole top, middle and bottom are 36 cm
	each totalling 108 cm. There are six other lengths of 15 cm each, totalling 90 cm.
	So the length of wood used is therefore $108 + 90 = 198$ cm.
45%	The percentage of children who like both netball and tennis is
	60 % of 75 % = 45%.
36°	Each interior angle of a regular pentagon is 108°. There are three pentagons
	which meet to create the acute angle which will be $360^{\circ} - 3(108^{\circ}) = 360^{\circ} - 324^{\circ}$
	$= 36^{\circ}.$
49 cm^2	Every shaded shape in this diagram has an unshaded shape of equal area.
	198 cm 45% 36° 49 cm ²

So the total area of the shaded part in the diagram is $\frac{1}{2} \times 14 \times 7 = 49 \text{ cm}^2$.

Some possibilities for further problems

- **P2** This question raises an important issue. The question 'How many rectangles have been drawn in this problem?' has the answer 2 because a square has all the properties of a rectangle but the rectangle does not have all the properties of the square. Again, 'How many parallelograms are there here?' has the answer 4 as all the rectangles are also parallelograms. On a pedantic note, could the triangle be a quadrilateral which has one side of length zero?
- Q1 Pupils can construct a table showing the smallest number of coins needed to make up to 20p and see if they can spot any patterns.
- **Q8** This question uses the idea of relative velocity. We can think of swimmers swimming up and down a river, or someone walking along a train corridor which is moving down the track etc.
- **Q9** Adding a small difficulty: suppose your maths teacher has 19 socks. How would that change the calculation?
- Q12 Visit www.transum.org/Maths/Investigation/CarPark/ for lovely examples of car park problems.
- Q14 We are all responsible for looking after our own health. Perhaps your pupils could take an interest in the numbers on food packets and tins.
- Q16 Dr B Ching is well known to readers of *Private Eye*. Dr Beeching was the man who, in the 1960s, wrote a report which recommended the closure of many UK railway lines. The problem in this question uses inverse ratio. If a train travels at twice the speed of another train, it will take half as long to do the journey. Here is another problem using inverse ratio: if a man takes six days to dig a hole, how many days will it take two men working at the same rate to dig an identical hole?
- Q17 A harder question: Mrs Cox is putting apples into bags that each contains either 4 apples or 5 apples. Pupils could list the number of apples which she could have used with none left over.