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A perfect number is a positive integer whose factor sum 
(excluding itself) is equal to itself*.

e.g. The factors of 6 are 1, 2 and 3, and 1+2+3=6

An abundant number is a positive integer whose factor 
sum is greater than itself.

e.g. The factors of 12 are 1, 2, 3, 4 and 6, 
and 1+2+3+4+6=16 > 12

A deficient number is a positive integer who factor sum is 
less than itself.

e.g. The factors of 15 are 1, 3 and 5
and 1+3+5=9 < 15

*Until page 5, to avoid repetition, in using the terms 
factor and factor sum I will exclude the number itself.



The three smallest perfect numbers are:
• 6 = 1 + 2 + 3
• 28 = 1 + 2 + 4 + 7 + 14
• 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248

The next two are 8128 and 33550336.

The largest known perfect number (discovered this year)   
is 274207280 (274207281 – 1). 

This is approximately equal to 4.5 x 1044677234

However, the 49 known perfect numbers are all even and so a 
big unsolved problem is 

‘Do odd perfect numbers exist?’  



What are the factor sums of
a) 36
b) 120  ?

At Key Stage 3 a method for solving this would be to test for 
divisibility starting with 1 and writing down factor pairs so 
discovered until you reach the square root of the number.

Hence
a) 1, (36), 2, 18, 3, 12, 4, 9, 6.    

Hence the factor sum of 36 is 55.
b)  1, (120), 2, 60, 3, 40, 4, 30, 5, 24, 6, 20, 8, 15, 10, 12

Hence the factor sum of 120 is 240.



On the last page we had the factor sum of 120 as being 240.

120 is the smallest triperfect number.  

A triperfect number is defined to be a positive integer whose 
factor sum is equal to three times the original number.

(The next triperfect numbers are 672 and 523776.  After this 
there are none under 100 million – I have checked this but not 
by hand!)

However, you notice that the factor sum here now includes the 
number itself!

We will redefine perfect to be consistent with this:
N is perfect if the sum of all its divisors is 2N  

i.e. σ N = 2N



1 2 4 7 (x1) 

3 6 12 (x3)

9 18 36 (x9)

(x13)

𝜎 36 = 7 × 13 = 91

This is OK if there are two distinct prime factors, but 
what do we do if there are more?



Let us consider 120 again.

120 = 23 × 3 × 5

Effectively we have two 
layers of a cuboid. 

1 2 4 8 15 (x1)
3 6 12 24 (x3)

(x4)

5 10 20 40 (x5)
15 30 60 120 (x15)

(x20)
(x24)

𝜎 120 = 15 × 4 × 6 = 360

Note: This is the same as (1 + 2 + 4 + 8) (1 + 3) (1 + 5)



So in general if N = p1
i1p2

i2 … pk
ik

𝛔 𝐍 = (𝟏 + 𝐩𝟏 + 𝐩𝟏
𝟐 + …+ 𝐩𝟏

𝐢𝟏)(𝟏 + 𝐩𝟐 + 𝐩𝟐
𝟐 + …+ 𝐩𝟐

𝐢𝟐) … (𝟏 + 𝐩𝐤 + 𝐩𝐤
𝟐 + …+ 𝐩𝐤

𝐢𝐤)

Example
σ 21000

= σ 21 × 1000
= σ (23 × 3 × 53 × 7)
=  (1 + 2 + 4 + 8) (1 + 3) (1 + 5 + 25 + 125) (1 + 7)
=  15 × 4 × 156 × 8
=  74880

So 21000 is clearly abundant!



Now in the Core 2 module sixth formers learn that 

a + ar + ar2 + … + arn–1 = 
a(rn –1)

r –1

Setting a = 1 and r = p we have that

1 + p + p2 + … + pk = 
pk+1 – 1

p –1

Consequently

σ N = (
p1

i1+1 – 1

p1–1
) (

p2
i2+1 – 1

p2–1
) …. (

pk
ik+1 – 1

pk–1
)



Now for odd perfect numbers the sum of all its factors is 
equal to twice the original number.  Algebraically this can be 
expressed as

2p1
i1 p2

i2… pk
ik = (

p1
i1+1 – 1

p1–1
) (

p2
i2+1 – 1

p2–1
) …. (

pk
ik+1 – 1

pk–1
)

Note the LHS is divisible by 2 but NOT divisible by 4

This means that the RHS also has to be 2 modulo 4.

We therefore need to consider products within modulo 4.



x 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

2p1
i1 p2

i2… pk
ik = (

p1
i1+1 – 1

p1–1
) (

p2
i2+1 – 1

p2–1
) …. (

pk
ik+1 – 1

pk–1
)

If all of the expressions in brackets equal 1 or 3 (mod 4) the 
product will be 1 or 3 (mod 4) too and so the RHS will not equal 
the 2 (mod 4) required.

However, if any of the expressions equal 0 (mod 4) or more than 
one of them equals 2 (mod 4), the product will be 0 (mod 4) and 
so again the RHS will not equal the 2 (mod 4) required.



We therefore need one of the prime factors to give 
rise to a factor sum that is 2 (mod 4) and the rest of 
the prime factors to give rise to factor sums of 1 or 3 
(mod 4).

Let us now consider what value modulo 4 
pi+1 – 1

p–1
has 

in two different cases: 



Given that we are dealing with ODD perfect numbers, prime factors will 
either be 1 mod 4 or 3 mod 4.

p ≡ 1 mod 4
Highest power                       1      p      p2 p3 p4 p5 p6 p7

Sum of  
pi+1 – 1

p–1
(mod 4)      1       2      3         0           1         2           3         0

p ≡ 3 mod 4
Highest power                       1      p      p2 p3 p4 p5 p6 p7

Sum of  
pi+1 – 1

p–1
(mod 4)      1       0      1         0           1         0           1         0

This means that an odd perfect number can’t have a prime factor raised 
to an odd power, unless it is a prime 1 mod 4, raised to a power which is 
also 1 mod 4.  

Moreover, this condition must happen once and only once!



In summary all the indices of distinct primes are even apart from one and 
only one prime of the form 1 (mod 4) which has an index which is also 
1 (mod 4).  

Without this exception the product of all the bracketed expressions will be 
1 or 3 (mod 4).

With more than one exception, two bracketed expressions of the form 2 
(mod 4) will create an overall product of 0 (mod 4).

We can therefore write

2N  =  2a2b4n+1 = S (
b4n+2 – 1

b–1
)

N – odd perfect number
b – the unique prime factor raised to the power of 4n +1
a2 – all the other prime factors combined (given they all have even indices)
S – the sum of all the factors of a2



Could we have odd perfect numbers with only two distinct prime 
factors?

If so,
2N  =  2a2rb4n+1 = (1 + a + a2 + … + a2r) (1 + b + b2 + … + b4n+1)
where b is the unique prime factor previously mentioned and a is 
in this case the other prime factor.

2 =   
𝜎(𝑎2𝑟)

𝑎2𝑟 ×
𝜎(𝑏4𝑛+1)

𝑏4𝑛+1

(
1

a2r + 
1

a2r–1 + 
1

a2r–2 … + 1) (
1

b4n+1 + 
1

b4n + 
1

b4n−1 + … + 1)

However,  1 + 
1

p
+ 

1

p2 + … + 
1

pi <  1 + 
1

p
+ 

1

p2 + … = 
1

1–
1

p

= 
p

p –1



We want 

2 = (
1

a2r + 
1

a2r–1 + 
1

a2r–2 … + 1) (
1

b4n+1 + 
1

b4n + 
1

b4n−1 + … + 1)

However,  1 + 
1

p
+ 

1

p2 + … + 
1

pi < 
p

p–1

If p = 3, 
σ( pi)

pi < 
3

2
where p could be a or b.

If p = 5, 
σ( pi)

pi <  
5

4

Other values of x will give smaller values of 
σ( pi)

pi .

Therefore, 

(
1

a2r + 
1

a2r–1 + 
1

a2r–2 … + 1) (
1

b4n+1 + 
1

b4n + 
1

b4n−1 + … + 1) < 
3

2
×

5

4
= 

15

8

and so an odd number with only two distinct prime factors would be 
deficient and thus could not be perfect.



Could we have odd perfect numbers with only three distinct factors?

If so, 
2𝑝1

2𝑟1𝑝2
2𝑟2b4n+1 = (1 + 𝑝1 + 𝑝1

2 + … + 𝑝1
2𝑟1)(1 + 𝑝2 + 𝑝2

2 + … + 𝑝2
2𝑟2) (1 + b + b2 + … + b4n+1)

Doing the same calculation as before, but now with three distinct prime factors, 

we find that 
3

2
×

5

4
×

7

6
= 

105

48
> 2.

So, we can’t rule this situation yet!

Which sets of prime factors could give a value of 
σ(N)

N
which reaches 2?



Below we will for the time being ignore the modulo 4 requirements and just 
consider whether a particular set of primes could have a chance of being 
anything other than deficient.

Sets of primes Upper bound 

 3  , 5, 7
3

2
×

5

4
×

7

6
= 

105

48
> 2            possible

 3  , 5, 11
3

2
×

5

4
×

11

10
= 

165

80
> 2           possible

 3  , 5, 13
3

2
×

5

4
×

13

12
= 

195

96
> 2            possible

 3  , 5, 17
3

2
×

5

4
×

17

16
= 

255

128
< 2            always deficient (also if 17+)

 3  , 7, 11
3

2
×

7

6
×

11

10
=

231

120
< 2  always deficient (nor if 7+ or 3+)



We thus have four different cases to consider:

Case 1:  N = 32l × 72m × 54n+1

Case 2:  N = 32l × 112m × 54n+1

Case 3:  N = 32l × 52m × 134n+1

Case 4:  N = 32l × 132m × 54n+1



Note that in all these cases, N is divisible by 5.

This means that if an odd perfect number exists in any of these cases, 
5 must divide  1 + p + p2 + … + pi for some prime p and index i.

To be concrete, Case 2 would mean that:

2× 3
2r1 × 11

2r2 × 54n+1 would be equal to

(1 + 3 + 32 + … + 32r1)(1 + 11 + 112 + … + 112r2) (1 + 5 + 52 + … + 54n+1)

In particular, p must be 3, 7, 11 or 13, as clearly 1 + 5 + 52 + … + 5i

cannot be divisible by 5 for any value of i.

We will consider on the next page a table of sums of powers in modulo 5 will help us 
considerably.



p p
p^i 1 2 3 4 σ(p^i) 1 2 3 4

0 1 1 1 1 0 1 1 1 1
1 1 2 3 4 1 2 3 4 0
2 1 4 4 1 2 3 2 3 1
3 1 3 2 4 3 4 0 0 0

i 4 1 1 1 1 i 4 0 1 1 1
5 1 2 3 4 5 1 3 4 0
6 1 4 4 1 6 2 2 3 1

7 1 3 2 4 7 3 0 0 0
8 1 1 1 1 8 4 1 1 1
9 1 2 3 4 9 0 3 4 0

If p = 3, 1 + 3 +32 + … + 3i is divisible by 5 if its index is of the form 4k+3
However, 3 needs to have an even index.  Therefore 3 can’t be the part divisible 
by 5.

If p=7, 1 + 7 +72 + … + 7i is divisible by 5 if its index is also of the form 4k+3.  
(Consider the column for 2 mod 5 this time.)  However, 7 also needs to have an 
even index.  Therefore 7 can’t be the part divisible by 5 either.



p p
p^i 1 2 3 4 σ(p^i) 1 2 3 4

0 1 1 1 1 0 1 1 1 1
1 1 2 3 4 1 2 3 4 0
2 1 4 4 1 2 3 2 3 1
3 1 3 2 4 3 4 0 0 0

i 4 1 1 1 1 i 4 0 1 1 1
5 1 2 3 4 5 1 3 4 0
6 1 4 4 1 6 2 2 3 1
7 1 3 2 4 7 3 0 0 0
8 1 1 1 1 8 4 1 1 1
9 1 2 3 4 9 0 3 4 0

If p=13, given that 13 is 3 mod 5, 1 + 13 + 132 + … + 13i is divisible by 5 
when the index is of the form 4k+3.  However, given that an odd perfect 
number is of the form a2b4n+1, 13 is either part of the a and would need 
an even index, or is b, and then would need an index which is 1 (mod 4) 
rather than 3 (mod 4).

Consequently, the necessary factor of 5 can’t divide into the 13 part.



Case 1:  N = 32l × 72m × 54n+1

Case 2:  N = 32l × 112m × 54n+1

Case 3:  N = 32l × 52m × 134n+1

Case 4:  N = 32l × 132m × 54n+1

If sums of powers of 

32l,72m, 54n+1, 52m, 134n+1 or 132m

are not divisible by 5, this rules out cases 1, 3 and 4.

This means that we are down to Case 2 if it is 
possible to have an odd perfect number with three 
distinct prime factors.



Case 2:  N = 32l × 112m × 54n+1

If the index of the 5 were merely 1, 
σ(N)

N
= 

σ(32l)

32l ×
σ(112m)

112m ×
6

5
<  

3

2
×

11

10
×

6

5
= 

198

100
< 2

N will therefore be deficient and not perfect.  The index of 
5 in N must therefore be higher and the next possible 
value of 4n+1 is 5.

Therefore 1 + 11 + 112 + … + 112m must be divisible by 25
(although clearly it would also need to be divisible by at 
least 55).  When does this occur?



index of 11, i 0 1 2 3 4 5 6 7 8 9

p^i (mod 25) 1 11 21 6 16 1 11 21 6 16

σ(p^i) (mod 25) 1 12 8 14 5 6 17 13 19 10

index of 11, i 10 11 12 13 14 15 16 17 18 19

p^i (mod 25) 1 11 21 6 16 1 11 21 6 16

σ(p^i) (mod 25) 11 22 18 24 15 16 2 23 4 20

Index of 11, i 20 21 22 23 24 25 26 27 28 29

p^i (mod 25) 1 11 21 6 16 1 11 21 6 16

σ(p^i) (mod 25) 21 7 3 9 0 1 12 8 14 5

N = 32l × 112m × 54n+1 (n≥ 1)

We know that σ(32l ) and σ(54n+1) can’t be divisible by 5.  
Therefore if N is perfect, it is necessary for σ(112m ) to be divisible by 25. 

From the table we can see that this will happen when i is of the form 25j+24.  
Combining this with the fact that the index of 11 is even, 
the index of 11 is of the form 50j+24 !  



Now 1 + 11 + 112 + … + 1150j+24 = 
1150j+25 – 1

10
(*)

But x – 1 divides into xn – 1 for all positive integers n, and so the 
numerator of (*) is divisible by 115 – 1.

Now 115 – 1 = 161050 = 2 × 52 × 3221

But since the prime number 3221 divides 115 – 1, this means that 1 + 11 + 
112 + … + 1150j+24 is divisible by the prime 3221.

Remember: in Case 2,  2× 3
2r1 × 11

2r2 × 54n+1 would be equal to

(1 + 3 + 32 + … + 32r1)(1 + 11 + 112 + … + 112r2) (1 + 5 + 52 + … + 54n+1)

However, N only has prime factors 3, 5 and 11.
So Case 2 was the last case left and this is not possible either.

Therefore an odd perfect number must have 
at least four distinct prime factors.    


