GEOMETRY AND PHYSICS 81

Geometry and Physics
MICHAEL ATIYAH

1 Introduction

In my 1982 Presidential Address to the
Mathematical Association | tried to explain the
generalrole of Geometryin Mathematicsso it seems
appropriatepn this centenaryoccasionthat! should
move beyond the confines of Mathematics and
discussthe interrelation of Geometryand Physics.
Therearetwo very goodreasondor doing this. One
is historicalandarisesfrom the closetiesbetweerthe
two subjectsin their early evolution. A secondand
more topical reasonis that, over the pasttwo decadesthere hasbeena
remarkable burst of interaction of a quite unexpectedkind between
Geometry and Physics.

I will beginthereforeby a brieflook at the historicaldevelopmenbefore
moving to describe the exciting recent events.

2 The classical period

Fromtheearliesttimes,the geometryof spaceéhasservedasthearenafor
physics.Euclid worked hard to abstractgeometryout of space but it was
always realized that this was essentiallya way of imposing a formal
mathematicabtructureonto the physicalworld. The task of the geometer
was to describeand study the possible shapesand mutual relations of
idealisedspatialobjectssuchaslines, trianglesor circles. Thesewould then
provide the language for the physicist.

By the time of IsaacNewtonthe requirement®f dynamics,bringing in
the notion of time, openedup a newarea.The crucial newideawasthat of
the gravitationalforce, acting at a distance.According to Newton a force
manifesteditself through a deviation from uniform straight line motion.
Forcesproducedcurvedpathsandthe strengthof the force wasreflectedin
the amount of curvature.

This linkage betweenforce and curvaturehas provedto be one of the
most long-lastingand fruitful ideasin the whole of Physics.Its greatest
triumphwasin Einstein'sTheory of GeneralRelativity wheregravitational
forceis interpretedasthe curvatureof 4-dimensionakpace-timeMoreover
theothergreatclassicaforce,electromagnetisntanalsobeinterpretedasa
suitable curvature.However, this interpretationrequiresthe addition of a
fifth angular or phase variable.

This useof 5 or higherdimensiongknown genericallyas Kaluza-Klein
theories)hasbeenincreasinglyadoptedas Physicshas developed.On the
onehand,otherforcesoperatingatthe nuclearlevel appeato be mosteasily
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interpretedn theseterms.Moreoverquantummechanicswith its emphasis
onvibratingmodestells usthat,if theadditionaldimensiongabove4) have
smalloverallscale(egif theradiusof the phasecircle is small)thentheyare
not detectedexceptat very high energies.This explainswhy, in ordinary
life, 4 dimensions are all that we notice.

In all theoriesof the Einstein-Maxwelltype (now calledgaugetheories)
the underlying physical entity is the geometryof space-timewith all its
additionaldimensionsGeometryhere,asthe etymologyimplies, represents
measuremertf distancesThe resultingforce is the curvatureor distortion,
representinghe deviationof measurementsom what they would be in a
vacuum.

3 Topology and quantum theory

This classicalpicture, identifying force with curvature,acquirestotally
new featureswhen we considerquantumphysicsin a seriousway. Ever
since the 1920s our picture of classical physics has been profoundly
changed.At the fundamentallevel of small distancesor high energies
quantum features become significant. In particular there are two
characteristicaspectsof quantumtheory which appearat first sight very
non-geometricFirst, thereis the fact thatcertainphysicalquantitiessuchas
angular momentum or electric charge only appearin discrete integer
multiplesof somebasicunit. The familiar continuumof Geometryappears
to bediscarded.Secondly the notion of preciselocalisationin spacecannot
always be maintained, undermining the fundamentals of Geometry.

Although quantumtheory appearsn thesewaysto be ungeometricalt
hasslowly beenrealisedthat thereis a resolutionof thesedifficulties. This
involves Topology, the branchof Mathematicswhich has arisen out of
Geometry and which concerns itself with global and qualitative aspects.

The simplestillustration of a topologicalconceptis to considera closed
pathin the planewhich doesnot go throughthe origin. Sucha path ‘winds
round’ the origin a certain numberof times. This ‘winding number’is a
discrete integer (which can be negative if we go backwardsor anti-
clockwise)andis a topologicalquantity.It doesnot dependon the precise
shapeor length of the closedpath. It is alsoa global notion, becauseve
cannotascribea winding numberto a small portion of the path,only to the
whole path.

The first connection between Topology and
guantuntheorywasthe argumenproducedoy Dirac
to explainthe ‘quantisation’ of electric charge— the
factthatall particlesin naturehaveanelectriccharge
which is an integral multiple of the chargeof an
electron. Dirac's argument was based on the
assumptiorof a hypotheticalmagneticmonopole’,a
particle which would radiatea magneticfield like a
chargedparticle radiatesan electric field. Such magnetlcmonopolesare
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allowedby Maxwell's equationof electromagnetisrand Dirac studiedthe
behaviourof an electronwanderingaroundin thefield of sucha monopole.
He showedthat its wave-functionwould not be single-valuedbut would
haveintegerjumpsrelatedto a ‘2-dimensionalwinding number’ (analogous
to the 1-dimensional winding number of a closed planar path).

4 Knots

A more interestingtopological problemconcernsknotsin 3-dimension
space. By a knot we meanherea closedpathin spacethat doesnot cross
itself. It can, of course, be visualized as a closed knotted piece of string.

The study of knotsis a branchof topology,becauseavhatis of interestis
not the exact shapeor length of the string but its ‘knottedness’.The
fundamentatjuestionwe canaskis whetherntwo givenknotsareequivalent,
that is whether we can move one around until it looks like the other.

Althoughideasrelatedto winding numbersarerelevantto knotsthereis
no simple integerwhich measureghe ‘knottedness’of a knot. More subtle
waysof distinguishingknotsareneededA very usefultool for this purpose
was discoveredin 1928 by the American mathematicianJ. W. Alexander.
He showedhow, for eachknot k, one could define a polynomialinvariant
Ac(t). Here t is an indeterminateand A (t) has integer coefficients (and
negativepowersof t are also allowed). This Alexanderpolynomial canbe
easilycalculatedfrom any planeprojectionof the knotin termsof the usual
over/undercrossingsTheimportantpointis thatthe resultis independentf
the particularprojectionandis the samefor equivalentknots.For example,
for the trefoil knot, the Alexander polynomial turns out to be

Aty =t — 1+t

On the otherhandthe standardcircle (which is ‘unknotted’) hasAlexander
polynomial equalto 1. This showsformally that the trefoil knot is not
equivalent to a circle.

Althoughthe Alexanderpolynomialis very usefulit doesnot distinguish
all knots. For example,it cannotdistinguisha knot from its mirror image.
Thetrefoil in particularcomesin two forms (left-handedandright-handed)
which are inequivalent but have the same Alexander polynomial.

It was therefore a great surprise when in 1984 the New Zealand
mathematiciarVaughanJonesdiscoveredanotherpolynomial invariant of
knots which could distinguishknots from their mirror images.Unlike the
Alexanderpolynomialthe Jonespolynomialhasno simpleinterpretationin
termsof standardopologicalideas(like winding numbers) Insteadit turns
out that it can best be understood in terms of quantum theory.

The link betweenknots and quantum theory involves 2-dimensional
physics,in which we ignorethe third spatialdimension.Instead by adding
time, we considerspace-times3-dimensiorandthe knotrepresents graph
of a moving collection of point-particles. If these particles are of an
appropriatetype, governedby suitableforces,thenthe Jonespolynomialis
relatedto various quantitiescomputedfrom the quantumfields associated
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with the space-timegraph. The invariance of the Jonespolynomial, in
particular its independenceof the choice of space-timeaxes,is then a
reflectionof the relativistic invarianceof the correspondinghysicaltheory.

The fact that the Jonespolynomial can distinguishmirror imagesrestson

the fact that the physicaltheoryinvolved s ‘chiral’, thatis it distinguishes

left from right. Suchchiral theoriesareanimportantpart of real physicsand
correspond to the lack of ‘parity conservation’ in certain physical processes.

5 Other applications

There are many other applicationsof quantumideasto Geometryand
Topology.Knots arejust the easiesto describeln particular,very exciting
newresultshavebeenobtainedin 4-dimensionatopologyby usingquantum
physicsin conventional3 spaceand 1 time dimensions.Again quantum
theorycan be usedto produceinvariantswhich help in classification.This
time, insteadof knots, oneis interestedn classifyingclosed4-dimensional
manifolds.Theseare the analogueof closed2-dimensionakurfaceswhere
thetopologicalclassificationis rathersimple. Every orientedclosedsurface
is topologically a spherewith a certainnumberof handlesattached.This
number characterises the surface.

The idea of considering closed surfaces(or manifolds) of higher-
dimensionis not as mysteriousor bizarreasit sounds.In fact this was a
theme of my presidential address.

The great surprisewas that the theory in 4-dimensionss quite unlike
that in any other dimension.It is much subtler and the subtlety can be
detectedby ideas coming from quantum theory. This was the great
discoveryof Simon Donaldsonfrom Oxford and the developmenbf this
theory has been a major feature of the past decade.

Within the past few months, remarkable developments and
simplifications have taken place in this 4-dimensionaltheory and these
againhavearisenfrom physics.The key ideahasbeento exploit the duality
betweerelectricity and magnetisnthatis latentin Maxwell's equationsand
thatlay behindDirac'suseof magnetiomonopolesExtendingthis duality to
the theories of the more complicated nuclear forces has been a great
challenge,but a recent breakthroughby N. Seibergand E. Witten has
openedup greatpossibilities.In particular,newlight is shedon Donaldson's
invariants.

6 Gravity

The physical theories involved in the examples above are all
generalization®f Maxwell's theory of electromagnetisnand the curvature
is that of somehigherdimensionalspacesuperimposean space-timeBy
contrastEinstein'stheory of GeneralRelativity dealswith 4-dimensional
space-time alone. Its curvature represents the Gravitational Field.

As yet thereis no satisfactoryway of combiningGeneralRelativity and
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QuantumTheory.In otherwordswe do not yet havea theory of Quantum
Gravity. ThesearcHor suchatheoryis thedriving forcein currentresearch
and there are many partial results and insights.

The fundamentalconceptualdifficulty is that in a quantumtheory we
havefluctuationsanduncertainty.lt is onething to havea field fluctuating
in afixed space-timeébackgroundlt is quite anotherthing to contemplatea
space-timehatis itself fluctuating, particularly whenthe fluctuationsmay
be topological in nature such as attaching handles or boring worm-holes.

Becauseof thesedifficulties considerableattention has been paid to
simple situations with lower dimensional space-times.In particular 1-
dimensionalspaceleading to 2-dimensionalspace-timeshave beenmuch
studied.As a mathematicaby-productmanysurprisingnewfactshavebeen
discovered about the geometry of 2-dimensional surfaces.

7 Conclusion

Overthepasttwo decadesdeasfrom quantumphysicshaveled directly
to remarkablenew mathematicaldiscoveriesacrossa very wide range of
problemsin Geometry.Usually the physical theoriesare ‘formal’ in the
sensethat they are not yet in rigorousmathematicaform. Mathematicians
havethereforeto produceproofs basedon alternativeideasandtechniques.
However, without the physical intuition and backgroundthe resultsin
questionwould probably not have been discovered. The physics also
provides an overall unifying conceptual framework, whereas the
mathematics frequently degeneratesinto uninformative and varied
techniques.

The reverse benefits in which the physicists benefit from the
mathematicarealsopresenthoughmoredifficult to assessin physicsthe
ultimatetestis whetherthetheoryexplainsall the experimentatlataandthat
stagehas not yet beenreached.But what is certainly true is that a new
dialoguehasbeenset up betweenmathematiciangind physicistsand ideas
are constantly flowing both ways. The future looks exciting.
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