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Geometry and Physics

MICHAEL ATIYAH

1  Introduction
In my 1982 Presidential Address to the

Mathematical Association I tried to explain the
generalrole of Geometryin Mathematicsso it seems
appropriate,on this centenaryoccasion,that I should
move beyond the confines of Mathematics and
discussthe interrelationof Geometryand Physics.
Therearetwo very goodreasonsfor doing this. One
is historicalandarisesfrom theclosetiesbetweenthe
two subjectsin their early evolution. A secondand
more topical reasonis that, over the past two decades,there has beena
remarkable burst of interaction of a quite unexpectedkind between
Geometry and Physics.

I will beginthereforeby a brief look at thehistoricaldevelopmentbefore
moving to describe the exciting recent events.

2  The classical period
Fromtheearliesttimes,thegeometryof spacehasservedasthearenafor

physics.Euclid workedhard to abstractgeometryout of space,but it was
always realized that this was essentiallya way of imposing a formal
mathematicalstructureonto the physicalworld. The task of the geometer
was to describeand study the possibleshapesand mutual relations of
idealisedspatialobjectssuchaslines,trianglesor circles.Thesewould then
provide the language for the physicist.

By the time of IsaacNewtonthe requirementsof dynamics,bringing in
thenotion of time, openedup a newarea.The crucial new ideawasthat of
the gravitationalforce, acting at a distance.According to Newton a force
manifesteditself through a deviation from uniform straight line motion.
Forcesproducedcurvedpathsandthestrengthof the forcewasreflectedin
the amount of curvature.

This linkage betweenforce and curvaturehasprovedto be one of the
most long-lastingand fruitful ideas in the whole of Physics.Its greatest
triumph was in Einstein'sTheoryof GeneralRelativity wheregravitational
force is interpretedasthecurvatureof 4-dimensionalspace-time.Moreover
theothergreatclassicalforce,electromagnetism,canalsobeinterpretedasa
suitablecurvature.However, this interpretationrequiresthe addition of a
fifth angular or phase variable.

This useof 5 or higherdimensions(knowngenericallyasKaluza-Klein
theories)hasbeenincreasinglyadoptedas Physicshas developed.On the
onehand,otherforcesoperatingat thenuclearlevel appearto bemosteasily
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interpretedin theseterms.Moreoverquantummechanics,with its emphasis
onvibratingmodes,tells usthat,if theadditionaldimensions(above4) have
smalloverallscale(eg if theradiusof thephasecircle is small) thentheyare
not detectedexceptat very high energies.This explainswhy, in ordinary
life, 4 dimensions are all that we notice.

In all theoriesof theEinstein-Maxwelltype (now calledgaugetheories)
the underlying physical entity is the geometryof space-timewith all its
additionaldimensions.Geometryhere,astheetymologyimplies,represents
measurementof distances.Theresultingforce is thecurvatureor distortion,
representingthe deviationof measurementsfrom what they would be in a
vacuum.

3  Topology and quantum theory
This classicalpicture, identifying force with curvature,acquirestotally

new featureswhen we considerquantumphysics in a seriousway. Ever
since the 1920s our picture of classical physics has been profoundly
changed.At the fundamentallevel of small distancesor high energies
quantum features become significant. In particular there are two
characteristicaspectsof quantumtheory which appearat first sight very
non-geometric.First, thereis the fact thatcertainphysicalquantitiessuchas
angular momentum or electric charge only appear in discrete integer
multiplesof somebasicunit. The familiar continuumof Geometryappears
to bediscarded.Secondly,thenotionof preciselocalisationin spacecannot
always be maintained, undermining the fundamentals of Geometry.

Although quantumtheory appearsin theseways to be ungeometricalit
hasslowly beenrealisedthat thereis a resolutionof thesedifficulties. This
involves Topology, the branch of Mathematicswhich has arisen out of
Geometry and which concerns itself with global and qualitative aspects.

Thesimplestillustrationof a topologicalconceptis to considera closed
pathin theplanewhich doesnot go throughtheorigin. Sucha path‘winds
round’ the origin a certain numberof times. This ‘winding number’ is a
discrete integer (which can be negative if we go backwardsor anti-
clockwise)andis a topologicalquantity. It doesnot dependon the precise
shapeor length of the closedpath. It is alsoa global notion, becausewe
cannotascribea winding numberto a small portion of thepath,only to the
whole path.

The first connection between Topology and
quantumtheorywastheargumentproducedby Dirac
to explain the ‘quantisation’of electriccharge− the
fact thatall particlesin naturehaveanelectriccharge
which is an integral multiple of the charge of an
electron. Dirac's argument was based on the
assumptionof a hypothetical‘magneticmonopole’,a
particlewhich would radiatea magneticfield like a
chargedparticle radiatesan electric field. Such magneticmonopolesare
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allowedby Maxwell'sequationsof electromagnetismandDirac studiedthe
behaviourof anelectronwanderingaroundin the field of sucha monopole.
He showedthat its wave-functionwould not be single-valuedbut would
haveintegerjumpsrelatedto a ‘2-dimensionalwinding number’(analogous
to the 1-dimensional winding number of a closed planar path).
4  Knots

A more interestingtopologicalproblemconcernsknots in 3-dimension
space. By a knot we meanherea closedpathin spacethat doesnot cross
itself. It can, of course, be visualized as a closed knotted piece of string.

Thestudyof knotsis a branchof topology,becausewhatis of interestis
not the exact shapeor length of the string but its ‘knottedness’.The
fundamentalquestionwe canaskis whethertwo givenknotsareequivalent,
that is whether we can move one around until it looks like the other.

Althoughideasrelatedto winding numbersarerelevantto knotsthereis
no simple integerwhich measuresthe ‘knottedness’of a knot. More subtle
waysof distinguishingknotsareneeded.A very usefultool for this purpose
was discoveredin 1928 by the AmericanmathematicianJ. W. Alexander.
He showedhow, for eachknot , onecould definea polynomial invariant

. Here is an indeterminateand has integer coefficients (and
negativepowersof are alsoallowed).This Alexanderpolynomial canbe
easilycalculatedfrom any planeprojectionof theknot in termsof theusual
over/undercrossings.Theimportantpoint is thattheresultis independentof
theparticularprojectionandis thesamefor equivalentknots.For example,
for the trefoil knot, the Alexander polynomial turns out to be

k
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t

A(t) = t − 1 + t−1

On the otherhandthestandardcircle (which is ‘unknotted’) hasAlexander
polynomial equal to 1. This showsformally that the trefoil knot is not
equivalent to a circle.

AlthoughtheAlexanderpolynomialis very usefulit doesnotdistinguish
all knots.For example,it cannotdistinguisha knot from its mirror image.
Thetrefoil in particularcomesin two forms (left-handedandright-handed)
which are inequivalent but have the same Alexander polynomial.

It was therefore a great surprise when in 1984 the New Zealand
mathematicianVaughanJonesdiscoveredanotherpolynomial invariant of
knots which could distinguishknots from their mirror images.Unlike the
Alexanderpolynomialthe Jonespolynomialhasno simpleinterpretationin
termsof standardtopologicalideas(like winding numbers).Insteadit turns
out that it can best be understood in terms of quantum theory.

The link betweenknots and quantum theory involves 2-dimensional
physics,in which we ignorethe third spatialdimension.Instead,by adding
time,weconsiderspace-timeas3-dimensionandtheknotrepresentsa graph
of a moving collection of point-particles. If these particles are of an
appropriatetype,governedby suitableforces,thenthe Jonespolynomial is
relatedto variousquantitiescomputedfrom the quantumfields associated
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with the space-timegraph. The invariance of the Jonespolynomial, in
particular its independenceof the choice of space-timeaxes, is then a
reflectionof the relativistic invarianceof thecorrespondingphysicaltheory.
The fact that the Jonespolynomial can distinguishmirror imagesrestson
the fact that the physicaltheoryinvolved is ‘chiral’, that is it distinguishes
left from right. Suchchiral theoriesareanimportantpartof realphysicsand
correspond to the lack of ‘parity conservation’ in certain physical processes.

5  Other applications
Thereare many other applicationsof quantumideasto Geometryand

Topology.Knotsarejust the easiestto describe.In particular,very exciting
newresultshavebeenobtainedin 4-dimensionaltopologyby usingquantum
physics in conventional3 spaceand 1 time dimensions.Again quantum
theorycan be usedto produceinvariantswhich help in classification.This
time, insteadof knots,oneis interestedin classifyingclosed4-dimensional
manifolds.Thesearethe analogueof closed2-dimensionalsurfaces,where
thetopologicalclassificationis rathersimple. Everyorientedclosedsurface
is topologically a spherewith a certainnumberof handlesattached.This
number characterises the surface.

The idea of considering closed surfaces(or manifolds) of higher-
dimensionis not as mysteriousor bizarreas it sounds.In fact this was a
theme of my presidential address.

The great surprisewas that the theory in 4-dimensionsis quite unlike
that in any other dimension.It is much subtler and the subtlety can be
detectedby ideas coming from quantum theory. This was the great
discoveryof Simon Donaldsonfrom Oxford and the developmentof this
theory has been a major feature of the past decade.

Within the past few months, remarkable developments and
simplifications have taken place in this 4-dimensionaltheory and these
againhavearisenfrom physics.Thekey ideahasbeento exploit theduality
betweenelectricity andmagnetismthat is latentin Maxwell'sequationsand
thatlay behindDirac'suseof magneticmonopoles.Extendingthis duality to
the theories of the more complicatednuclear forces has been a great
challenge,but a recent breakthroughby N. Seiberg and E. Witten has
openedupgreatpossibilities.In particular,newlight is shedon Donaldson's
invariants.

6  Gravity

The physical theories involved in the examples above are all
generalizationsof Maxwell's theory of electromagnetismand the curvature
is that of somehigherdimensionalspacessuperimposedon space-time.By
contrastEinstein'stheory of GeneralRelativity dealswith 4-dimensional
space-time alone. Its curvature represents the Gravitational Field.

As yet thereis no satisfactoryway of combiningGeneralRelativity and
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QuantumTheory.In otherwordswe do not yet havea theoryof Quantum
Gravity. Thesearchfor sucha theoryis thedriving forcein currentresearch
and there are many partial results and insights.

The fundamentalconceptualdifficulty is that in a quantumtheory we
havefluctuationsanduncertainty.It is one thing to havea field fluctuating
in a fixed space-timebackground.It is quite anotherthing to contemplatea
space-timethat is itself fluctuating,particularly when the fluctuationsmay
be topological in nature such as attaching handles or boring worm-holes.

Becauseof thesedifficulties considerableattention has been paid to
simple situations with lower dimensional space-times.In particular 1-
dimensionalspaceleading to 2-dimensionalspace-timeshave beenmuch
studied.As a mathematicalby-productmanysurprisingnewfactshavebeen
discovered about the geometry of 2-dimensional surfaces.

7  Conclusion
Over thepasttwo decadesideasfrom quantumphysicshaveled directly

to remarkablenew mathematicaldiscoveriesacrossa very wide rangeof
problemsin Geometry.Usually the physical theoriesare ‘formal’ in the
sensethat they arenot yet in rigorousmathematicalform. Mathematicians
havethereforeto produceproofsbasedon alternativeideasandtechniques.
However, without the physical intuition and backgroundthe results in
question would probably not have been discovered. The physics also
provides an overall unifying conceptual framework, whereas the
mathematics frequently degenerates into uninformative and varied
techniques.

The reverse benefits in which the physicists benefit from the
mathematicsarealsopresentthoughmoredifficult to assess.In physicsthe
ultimatetestis whetherthetheoryexplainsall theexperimentaldataandthat
stagehas not yet been reached.But what is certainly true is that a new
dialoguehasbeenset up betweenmathematiciansandphysicistsand ideas
are constantly flowing both ways. The future looks exciting.
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