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1. History
Of all thechangesthathavetakenplacein themathematicalcurriculum,

bothin schoolsanduniversities,nothingis morestriking thanthedeclinein
the centralrole of geometry.Euclideangeometry,togetherwith the allied
subject of projective geometry,has been dethronedand in some places
almostbanishedfrom the scene.While educationalreform was certainly
neededthereis alwaysthedangerthat thependulummay swing too far the
other way and that insufficient attentionmay be paid to geometryin its
variousforms. Much of the difficulty herecentresroundthe elusivenature
of thesubject:What is geometry?I would like to examinethis questionin a
very generalway in the hopethat this may clarify the educationalreasons
for teachinggeometry,and for deciding what is appropriatematerial at
different levels. 

Let me begin by taking a historical look at the developmentof
mathematics.It is I think no accidentthat geometry,in the handsof the
Greeks, was the first branch of mathematicsto reach maturity. The
fundamental reason is that geometry is the least abstract form of
mathematics:this meansthat it hasdirect applicability to everydaylife and
also that it can be understoodwith less intellectual effort. By contrast
algebrais the essenceof abstraction,involving a dictionary of symbolism
which hasto be masteredby greateffort. Evenarithmetic,basedasit is on
theprocessof counting,dependson its own dictionarysuchasthedecimal
system, and took longer to evolve. 
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Of course,at a sophisticatedlevel, geometrydoesinvolve abstraction.
As the Greeksrecognised,the points and lines which we meetin the real
world areonly approximationsto some“ideal” objects,in an“ideal” world
where points have no magnitudeand lines are perfectly straight. These
philosophicalreflectionsdonot howeverworry thepractitionerof geometry,
be he a school-childor a civil engineerandgeometryat this level remains
the practical study of physical shapes. 

For many centuriesEuclideangeometrydominatedthe mathematical
scene,but the emergenceof algebra, its application by Descartesto
geometryand the subsequentdevelopmentof calculusaltered the whole
characterof mathematics.It becamemuch more symbolic and abstract.
Inevitably geometry came to be regarded as primitive and old-fashioned.

While theserival branchesof mathematicswere being developedthe
foundationsof geometryandits relationto thephysicalworld werebeingre-
examined.In the nineteenthcentury the famous “parallel postulate” of
Euclid, assertingthe existenceof a uniqueline parallel to a given line and
passingthrougha given point, was shown to be independentof the other
axioms.Non-Euclideangeometries,in which this postulatedoesnot hold,
were discovered.This had the profound if disturbing effect of liberating
geometryfrom physics.While thereis only onephysicaluniversethereare
manydifferent geometriesandit is not clearwhich oneis most relevantto
our universe.For a while algebra attemptedto take advantageof this
division of ranks in the geometrical field. Felix Klein in his famous
Erlanger Programm attemptedto define geometryas the study of those
propertieswhich areinvariantundera givengroupof symmetries:different
geometriescorrespondingin this way to different symmetrygroups.While
this hasbeena very fruitful point of view in connectionwith non-Euclidean
geometriesits scope had already been underminedby the earlier far-
reachingideasof BernhardRiemann.For Riemannspacedid not haveto be
homogeneous,its curvaturecould vary from point to point andtheremight
be no symmetriesat all. Instead of group theory Riemann based his
geometryon the differential calculusand,aswe know, his view-point was
ultimately vindicated by Einstein’s general theory of relativity. 

The outcome of all this introspection by geometersshowed that
geometry is not just the study of physical space.In particular it is not
restrictedto 3 (or 4) dimensions.But in thatcasewhat is theuseof all these
othergeometries?Are theysimplyabstractgamesplayedby mathematicians?
I shall attemptto answerthesequestionsby showinghow abstract“spaces”
and geometriesoccur naturally in a wide variety of ways. Some of my
examples will be blindingly familiar but others may be more novel.

2. Examples of non-physical spaces 

Graphs. At all levels in mathematicsgraphsare familiar andwidely used.
The simplest is perhapsthe distance/timegraph for a moving object. Of
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coursethe planeis part of Einstein's4-dimensionalspace-time,but in
our graphthe time variable is replacedby a secondspacevariable . For
other examples,however,suchas thoseusedin economics,the variables
may haveno relation to space-timeat all. The planein which we draw our
graph is an abstractplane, but the practical advantageof such pictorial
representationsis clearly enormous.The advantagerestson the capacityof
the brain to see two-dimensional patterns literally at a glance. 
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Thecomplexplane. Therepresentationof complexnumbers by points
of a planeis againan almosttoo familiar exampleof an “abstract”plane.If
for instance representsdistancealong a fixed line, and if an algebraic
probleminvolving this distanceleadsto a complexsolution , then
doesnot correspondto any real direction.Familiarity breedscontemptand
longexposureto complexnumbersmakesthecomplexplanealmosttangible.
However,as the greatGausssaid “the true metaphysicsof is elusive”.
Thosewho haveto introducestudentsto complexnumbersfor the first time
may well agree. 
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Riemannsurfaces. While the two previousexamplesare familiar, when we
combinethemthegeometrybecomesmoreserious.Considerfor examplethe
graphof the (two-valued)function where is somepolynomial.
When arerealwe candrawthis in anordinaryrealplane,but if we take
and both to be complex the graph becomesa real surface in a four-
dimensionalreal space.This is the Riemannsurfaceof the function andits
geometric(or topological)propertiesare of fundamentalimportancein the
analyticstudy of the function. This illustratesthe importanceof “abstract”
geometricalideasin thestudyof polynomialsor analyticfunctionsof several
variables. In fact complex algebraic (and analytic) geometry are now
flourishing branches of mathematics. 

y2 = f (x) f
x, y x
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Dynamics. In Newtonianmechanicsthemotionof a particlein a given field
of forceis determinedif we know its positionandvelocity at oneinstant.To
describeits subsequentmotion it is thenconvenientto introducethe“phase-
space”of pairs , whereboth componentsare 3-vectorsand represent
positionandvelocity respectively.Themotionwill thenberepresentedby a
curve in this 6-dimensionalspace.For instanceif motion is on
a line rather than in 3-space,the phasespaceis then 2-dimensionaland
simple harmonicmotion correspondsto circles in this phase-plane.These
phase pictures are extremely useful in general dynamical problems. 

(x, v)

((x (t) , v (t))

Rigid bodies. Suppose,insteadof a particle, we havea rigid body. Before
proceedingto look at motionof sucha body considerfirst the staticproblem
of just describingits position.Assumingits centreof massfixed at the origin
we are left with the rotationsabout the origin. Such rotationshave three
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degreesof freedombut thesedo not correspondto specifying3 Cartesian
coordinates . The “space”of rotationsis actuallytheNon-Euclidean
(elliptic) 3-space,the quotientof the 3-sphereby the anti-podalmap.(The
mostelegantway of seeingthis is to usequaternions.Thequaternions of
unit normform the3-sphereandacton the3-spaceof imaginaryquaternions

by . This gives all rotations of 3-spacebut give the same
rotation and are anti-podal pairs on the 3-sphere.)Thus non-Euclidean
geometry appears here out of Euclidean geometry. 

(x, y, z)
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Line geometry. If our rigid body is replacedby a long thin rod idealisedto a
line of infinite lengththenwe cannotdescribeits positionin quite thesame
way becauseits centreof massis not now defined.Insteadwe canpick two
points and on the line andconsiderthe
6-vector . If we pick anyotherpair on theline this 6-vector
getsmultiplied by a scalar.Moreoverits componentssatisfy the quadratic
relation

X = (X1, X2, X3) Y = (Y1, Y2, Y3)
(X − Y, X ∧ Y)

(X − Y) . (X ∧ Y) = 0

This meansthat linesin 3-spacecanbeparameterisedby pointsof a quadric
in projective5-space.This is the famousKlein representation.WhenI first
encounteredit asa youngstudentI thoughtit oneof themostbeautifulideas
in mathematics.To illustrate its propertieslet me recall that in 3-spacea
hyperboloidof onesheethastwo systemsof generatinglines.Similarly in 5-
spacethe Klein quadrichastwo systemsof generatingplanes.A planeof
onesystemparametrisesall lines in 3-spacethrougha fixed point, while a
planeof the othersystemparametrisesall lines in 3-spacelying in a fixed
plane.From this we canimmediatelydeducethe incidencepropertiesof the
generatingplanes.Namelytwo planesof thesamesystemalwaysmeetin a
point (e.g.becausetwo pointsin 3-spacelie on a uniqueline), while planes
of oppositesystemsusuallydo not meet(becausethereis in generalno line
in 3-spacewhich goesthrougha given point andlies in a given plane .
Howeverexceptionallyplanesof oppositesystemscanmeetand thenthey
meetin a line (if lies in thereis a wholepencil of lines through lying
in ).
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It is interestingthat this Klein representationhasin recentyearsplayed
a fundamentalrole in the work of Roger Penrosein theoreticalphysics.
RoughlyspeakingPenrosethinks of the Klein quadricasspace-time(after
complexification) and the original 3-space(also complexified) is then a
fundamentalauxiliary space(called twistor space)which is supposedto be
more basic in some ways than space-time (e.g. it has fewer dimensions).

Functionspaces. If insteadof a rigid rod we now havea finite pieceof string
thenits possiblepositionsin 3-spacewill requireinfinitely manyparameters.
We candescribeits positionby threefunctions where is a
parameteron the string (e.g. distancefrom one end). The “space” of all

x (t) , y (t) , z(t) t
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positions of the string is therefore an infinite-dimensionalspace.Such
function-spacesoccur frequently in calculusof variationsproblems(when
we are trying to minimise some quantity depending on a function).
Geometricalideashave proved very useful in thesecontexts,notably in
connection with “fixed-point theorems”.

3. Conclusions 
Theprecedingexamplesweredesignedto illustratethe fact thatspaces,

frequentlyof high dimension,arisequitenaturallyout of realisticsituations.
I choseexamplesfrom 3-dimensionalmechanicsto emphasisethis reality.
Of coursea sophisticatedmathematicianwill quite happily startwith real
variables and regard theseas coordinatesof a point in -
dimensionalspace.Such an abstractstarting point may not however be
entirely convincingto the scepticwho may haveseriousdoubtsaboutthe
“meaning” of higher-dimensional geometry. 

n
(x1,  … , xn) n

Are we now anyfurther forward towardsansweringthe initial question
“What is geometry?”?If geometryis not just thestudyof physicalspacebut
of anyabstractkind of spacedoesthis not makegeometrycoincidewith the
whole of mathematics?If I canalwaysthink of real variablesasgiving a
point in -space what distinguishes geometry from algebra or analysis? 

n
n

To get to grips with this question we have to appreciate that
mathematicsis a humanactivity and that it reflects the natureof human
understanding.Now the commonestway of indicating that you have
understoodan explanationis to say ‘I see’. This indicatesthe enormous
powerof vision in mentalprocesses,theway in which thebraincananalyse
andsift what the eye sees.Of course,the eye can sometimesdeceiveand
there are optical illusions for the unwary but the ability of the brain to
decode two- and three-dimensional patterns is quite remarkable. 

Sight is not howeveridenticalwith thought.We havetrainsof thought
which takeplacein sequentialform, aswhenwe checkanargumentstepby
step.Such logical or sequentialthought is associatedmore with time than
with spaceandcanbecarriedout literally in thedark.It is processesof this
kind which can be formalisedin symbolic form and ultimately put on a
computer. 

Broadly speakingI want to suggestthat geometry is that part of
mathematicsin which visual thought is dominantwhereasalgebrais that
part in which sequentialthought is dominant.This dichotomy is perhaps
betterconveyedby the words “insight” versus“rigour” and both play an
essential role in real mathematical problems. 

Theeducationalimplicationsof this areclear.We shouldaimto cultivate
anddevelopboth modesof thought.It is a mistaketo overemphasiseoneat
the expenseof the other and I suspectthat geometryhasbeensuffering in
recentyears.The exactbalanceis naturallya subjectfor detaileddebateand
mustdependon thelevelandability of thestudentsinvolved.Themainpoint



184 THE MATHEMATICAL GAZETTE

I have tried to get acrossis that geometryis not so much a branch of
mathematics as a way of thinking that permeates all branches. 

MICHAEL ATIYAH
Mathematical Institute, University of Oxford


