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Tractive effort, acceleration and braking

Context

For a railway to operate efficiently and safely, its locomotives should be powerful enough to accelerate their trains rapidly to the maximum allowed line speed, and the braking systems must be able to bring a train reliably to a standstill at a station or signal, even on an adverse gradient.   Railway operators need to calculate train accelerations and decelerations in order to plan their timetables, and signals must be sited so as to allow adequate stopping distances for all the various passenger and goods services that they are required to control.

In practice there are many different and complex considerations that must be included in a realistic model of railway operation.  Here, just some of the simpler main issues are identified and examined, in order to show how mathematical analysis can be used to provide an indication of expected performance.  The data values used in the examples (from [1]) do not refer to any specific operating company, locomotive or rolling stock, but are chosen to give realistic illustrations of how practical equipment might behave.      

Tractive effort

The force which a locomotive can exert when pulling a train is called its tractive effort, and depends on various factors.  For electric locomotives, which obtain their power by drawing current from an external supply, the most important are:

weight
the adhesion between the driving wheels and the track depends on the weight per wheel, and determines the force that can be applied before the wheels begin to slip;

speed
up to a certain speed, the tractive effort is almost constant.  As speed increases further, the current in the traction motor falls, and hence so does the tractive effort. 
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To characterise the power of their locomotives, manufacturers measure tractive effort as a function of speed.  Tests are often performed with the locomotive stationary but resting on rollers, thereby avoiding the effects of air resistance and any imperfections in the track.
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The data points in Figure 1 show an example of the tractive effort of an electric locomotive.  In order to use this information easily in calculations of acceleration and deceleration, it is helpful to develop an approximation which covers the speed range of interest, but has a simple mathematical form.  One possible technique is piecewise-polynomial approximation – the speed range is split into several contiguous intervals, in each of which the tractive effort is represented by a polynomial function.  For the example shown, a good representation can be obtained by using three speed segments, and a linear approximation for tractive effort on each:
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where P is the tractive effort in newtons, and v is the speed in metres per second.  This is shown as a solid line in the Figure.

Drag
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Inevitably, a moving train exerts a drag on the locomotive propelling it.  This force, which opposes the motion, comes from a variety of sources, the most important being friction in the axle bearings, air resistance, and resistance from the rail as the wheels roll along it.  Railway operators estimate drag from experiments which measure the force needed to keep a train moving at a constant speed.  Polynomials can again be used to approximate the variation of drag with speed, and it is generally agreed in the railway industry that a quadratic function often suffices over the full range, although the coefficients used will vary from railway to railway and with train type.  As an  example, the drag might be given approximately by:
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where Q is the drag in newtons, and v is the speed in metres per second.  This is shown as the dashed line in Figure 1.

Brake force

The brake force available depends on two factors:

1. the adhesion between the rail and the wheels being braked, and

2. the normal reaction of the rail on the wheels being braked (and hence on the weight per braked wheel)

Generally, it is specified as a fraction (, say) of the total weight of the train:
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A typical value for   is 0.09  

Train dynamics    

[image: image64.wmf]-20

0

20

40

60

80

100

0

5

10

15

20

25

30

35

Distance from reference point (km)

Height above reference point (m)

393

1098

508

338

335

L

333

812

[image: image65.wmf]0

5

10

15

20

25

30

35

40

45

50

0

100

200

300

400

500

600

700

800

Time (s)

Speed (m/s)

The dynamics of a train moving with speed v along a track inclined at an angle 
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 to the horizontal are determined by the forces shown in Figure 2.

Here,
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is the tractive effort of the locomotive;
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is the drag;
B
is the brake force;
mg
is the weight of the train;
N
is the reaction of the track.

By Newton’s second law of motion, the acceleration  f  is given by:
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This equation can be used to derive a number of relationships that are important to different aspects of railway operation.  Some of these are considered in the following sections.

Maximum speed as a function of gradient

A train reaches its maximum speed when available tractive effort just balances the sum of drag and downhill gravitational force, reducing the acceleration to zero.  Consequently, the maximum speed is found by solving:
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where 
[image: image9.wmf]a

g

sin

º

 is the gradient.

Since the approximation to 
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 is linear within each segment, and that for 
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 is quadratic, the calculation of maximum speed for a particular gradient reduces to the solution of a quadratic equation.  However, in order to determine which segment of the tractive effort approximation should be used for a given gradient, it is useful first to establish a set of gradient values 
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 whose corresponding maximum speeds are equal to the transition speeds 
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 between segments.  Specifically:



[image: image14.wmf](

)

mg

v

Q

v

P

i

i

i

)

(

)

(

-

=

g


Then:
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Figure 3 shows the results of calculations for a train of total weight 865 tons.  Here, gradient is given in percent – the amount in metres the track rises for every hundred metres traversed.  An alternative convention is to specify it  reciprocally – the distance in metres along the track for a rise of one metre (e.g. 1 in 50 is equivalent to 2%).

Braking distance

To calculate how long it will take for a train to come to rest when the locomotive power is cut off and the brakes are applied, and how far it will travel in this time, set 
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.  Since acceleration,  f,  is rate of change of velocity, a differential equation:
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describes the motion, and, once the initial speed is given, defines v as a function of time t. 

Since the braking force B is essentially a constant (= mg ), independent of speed, the differential equation can be integrated by separation of variables, leading to:
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Remembering that the drag Q(v) is approximated by a quadratic function of speed:
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it becomes clear that the braking time T required from speed v is obtained as the integral:
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Appendix 1 shows how this integral can be expressed in terms of standard functions.

From this result, a further integration is needed to recover the distance travelled as a function of time.  A simpler alternative is to calculate the braking distance directly by writing:
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in the original equation, to give:
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which is a relation between distance s and speed v.

This differential equation can also be integrated by separation of variables, leading to:
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and hence the braking distance S required from speed v is obtained as the integral:
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Appendix 2 shows how this integral can be expressed in terms of standard functions.

Since braking time and distance depend both on initial speed and the gradient of the track, there are various summary presentations that provide useful information.

As an example, Figure 4 shows the distance needed to brake to a standstill as a function of the track gradient, calculated for a range of different initial speeds.

Time spent accelerating to required speed

Each stop that a train makes during its journey involves three phases: braking to a standstill, remaining stationary to set down and pick up passengers, and accelerating to the required line speed.  An appropriate allowance for the time taken for each of these phases, as well as other braking and acceleration manoeuvres (e.g. to traverse a set of points) must be included when drawing up realistic timetables.  The previous section considered time taken for braking; calculation of the time taken in acceleration is similar, but somewhat more involved because of the piecewise-linear approximation to the variation of tractive effort with speed.  

Setting 
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which, once the initial speed is given, defines v as a function of time t. 

Since the tractive effort 
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is a function of speed only, the differential equation can be integrated by separation of variables, leading to:


[image: image30.wmf].

)

(

)

(

0

0

ò

ò

=

-

-

T

V

dt

mg

v

Q

v

P

mdv

g


Because the approximation to 
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is a piecewise-linear function of speed, and the drag Q(v) is approximated by a quadratic function of speed, the time T required to accelerate to speed v can be obtained by splitting the motion into segments.  A transition between segments is required when the speed reaches one of the breakpoint speeds in the piecewise-linear approximation for 
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For each segment, the elapsed time and the distance travelled can be expressed as:
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where 
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 are, respectively, starting and finishing speeds for the segment, and the parameters:
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all remain constant throughout the segment.  The two integrals are again of the type considered in Appendices 1 and 2, and so can be expressed in terms of standard functions. The total time or distance needed to accelerate to a given speed is found by summing over the segments.

Dealing with changes in track gradient

Generally, the gradient 
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 is a piecewise-constant function of distance along the track – an example is shown in Figure 5, which refers to part of the UK West-Coast main line [2].

To deal with this, the analysis for both braking and acceleration calculations can be further segmented, with transitions between segments corresponding to instants when the train reaches a position on the track at which the gradient changes.  As an example, Figure 6 shows a graph of speed against time for acceleration from rest over the given track profile, calculated using the tractive effort of Figure 1.

Sources

1. Data provided by Vince Barker, Modelling Consultant, formerly at Alstom Transport

2. BR main-line gradient profiles,  ISBN 0-7110-0875-2
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Appendices: Evaluation of integrals

1  Integration of reciprocal quadratic polynomial
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Step 1: Write the denominator in the form:
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and check the value of the discriminant 
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In case (iii), for the location of the singularities, use:
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to minimise loss of accuracy through numerical cancellation.

Step 2:
Check that the range of integration does not include a singularity.

In case (ii):
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In case (iii):
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Step 3:
Carry out the integration by making the substitution:
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2 Integral of x times reciprocal quadratic polynomial
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For this integral, carry out the checks in steps 1 and 2 above, and then write:
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to give:
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Integration


Analytic solution of first order differential equation with separable variables





Algebra and functions


Differentiation


Integration





Figure � SEQ Figure \* ARABIC �6�


Speed against time for given length of track.





Figure � SEQ Figure \* ARABIC �5�


Vertical profile of track. Each segment is labelled with its reciprocal gradient.  





Figure � SEQ Figure \* ARABIC �4�


Stopping distance as a function of gradient for a range of initial speeds.
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Forces acting on a train on a track with inclination α
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Figure � SEQ Figure \* ARABIC �3�


Maximum speed as a function of track gradient
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Tractive effort and drag as a function of speed








Algebra and functions


Quadratic functions and their graphs





Integration


Analytic solution of first order differential equation with separable variables





Differentiation


Chain rule





Integration


Integration using partial fractions





Algebra and functions


Completing the square for a quadratic function. 





Algebra and functions


The discriminant of a quadratic function.





Integration


Integration by substitution.
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