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	Random Transmitters

Context

Plextek Limited develop communications technology products and systems, such as the electronics inside mobile telephones and telemetry units used in Formula One motor racing. One project in which they have been involved was to develop electricity meters that can be read remotely.

Cheap transmit-only radio units can be incorporated in electricity meters; this article looks at how should they be set up to give the best data.

For a system like this to be feasible, many transmitters would need to share the same radio channel. If signals were transmitted at regular intervals, all the transmitters would need to be co-ordinated which is not practical. So the transmitters are set to transmit at random; sometimes signals from different transmitters will interfere but that does not matter as long as over a reasonable period a clear signal can be obtained.
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chain rule

stationary points


optimisation

probability:


independent events

	Problem

Let there be N transmitters transmitting t-second messages randomly but on average every T seconds. The probability that an individual message will be not overlap that from a second transmitter is 
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. Since there are N transmitters, the amount of data, D, getting through will be 
[image: image5.wmf]1

2

N

NtTt

TT

-

-

æö

ç÷

èø

. What is the maximum amount of data that can get through and how can this be achieved?
	

	Solution
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, so differentiating D with respect.to t gives 
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Setting this equal to 0, to obtain values of t for which D is stationary, gives two solutions: 
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As many transmitters will share the same radio channel, T is much greater than 2t, so it is only necessary to determine whether 
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 gives a maximum.

This can be done by considering the sign of 
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 is positive, so, as t increases, 
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 changes from positive to negative where 
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, so this value of t maximises D.

Substituting this value for t into the expression for D gives the maximum data rate as 
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To see how D behaves, for example to find out how sensitive it is to slight variations in the value of t, it is useful to draw a graph. The one below shows Prob(t,T,N), the probability than a message will get through as well as D or Data(t,T,N), the total transmission time Nt/T x Prob(t,T,N), in the case where t = 1 and N = 1000. 
	

	[image: image1.wmf]d

d

n

x

x


[image: image18.wmf]®¥

æö

ç÷

èø

n

x

n

x

n

e=lim1+


or

[image: image19.wmf]®¥

æö

ç÷

ç÷

èø

å

=0

e=lim

r

n

x

n

r

x

r!


binomial expansion
	Extension

What happens to the maximum data rate, 
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, when a large number of transmitters share the same radio channel? This can be looked at in two ways.

Firstly, 
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 and, for large N, 
[image: image22.wmf]1

11 and 1e

N

x

NN

æö

-»+»

ç÷

èø

, so 
[image: image23.wmf]1

max

11

.1.e

22e

D

-

»=

.

	
	Alternatively, you can apply a binomial expansion to 
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So, for large N, 
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	Source

The material in this article is based on a talk given by David Spreadbury of Plextek Limited (http://www.plextek.co.uk) at Hills Road Sixth Form College, Cambridge on 8 July 1999. We are very grateful for his permission to use this material.
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