Computer Science

Cryptography
- different ciphers
- Caesar – simple to understand




- RSA  - uses indices, modulo arithmetic

Programming

- compare different styles

- imperative






- functional






- logic






- object-oriented

- different Mathematical functions
- factorisation






- powers






- sequences and series






- factorial






- calculus

- logic




- Boolean functions






- truth table






- if … then … else

Functional Programming

- proving program correctness

- pattern matching

- recursive functions

- lists
- reverse


- accumulating parameters


- induction


- map


- fold functions

- composition of functions

Cryptography

Cryptography is the science of hiding information. Cryptography consists of a collection of techniques - “ciphers” - used to make things harder to read and understand. There are many uses of cryptography from Internet security to spying! There is a constant battle between people who make ciphers and those who want to break them. Modern cryptographic algorithms rely on Mathematical problems that are seen to be hard to undo. The processes of applying and removing ciphers are called encryption and decryption. A piece of text before encryption is called plaintext and an encrypted text is called ciphertext. Many ciphers rely on a key – this can be used to encrypt and/or decrypt a message.

The Caesar cipher

One of the oldest and simplest ciphers is the Caesar cipher. This involves shifting each of the letters in a message by a set number of places along the alphabet (cycling back the beginning of the alphabet if necessary). For example, if we wanted a shift of 5 places then A becomes F, B becomes G, … , Y becomes D and Z becomes E. So, the word CAESAR becomes HFJXFW. The key for this cipher is 5 (representing the shift).

Unfortunately, the Caesar cipher is very easy to break. It is sufficient to find out what one letter in the code represents – the rest follow automatically. One technique for breaking the Caesar cipher is called frequency analysis. English, as with most languages, has letters that are used more frequently than others. Some of the most common letters in English are E, T, A, I, N and O.  So we can try to match the most frequent letter in the ciphertext to one of the most frequent letters in English. In the example, F is the most common letter in the ciphertext – so by supposing this was one of the most frequent letters in English, we will obtain the plaintext. This means that the Caesar cipher is very insecure.

1.
Decode the following message and state the key:

    
KYV TRVJRI TZGYVI ZJ VRJP KF SIVRB

2.
When could frequency analysis fail? Can we still break the code?

3.
Choose a sample piece of text. From this text, estimate the frequency of each of letters in the English alphabet.

RSA cipher

The Caesar cipher is an example of a cipher that uses the same key to encrypt and decrypt a message – this type of cipher is known as private key. It would be more secure if two keys were used – one for encryption and one for decryption. This leads to public key ciphers. In a public key cipher, the key for encryption can be made public but the decryption needs to be kept private. The security of such a system relies on the fact that it must be hard to work out the private key from the public key. The RSA system is perhaps the most widely known public key system. The security of RSA is based on the fact that splitting a large number into factors is hard. 

Consider the following:

I have multiplied two prime numbers together to give 169546638683.

What are the two numbers?

This should take you a while to solve as you have to check many primes before you arrive at the correct answer of 285421 and 594023.

4.
Find the pair of prime numbers that multiply to give 238240741.

To use the RSA, you need to pick two “large” primes p and q (in current systems, the primes must have over 300 digits!). Then work out the product n = p × q. 

Now, you need to pick a public key e. To do this, you must pick a number which is smaller than n and which has no factors in common with (p-1)(q-1). The public key is usually picked to be fairly small.  

Here is some notation that we will need:

a (mod n) means that we divide a by n but we only consider the remainder.

For example, 
10 (mod 4) = 2



10 (mod 5) = 0




10 (mod 7)  = 3

                        10 (mod 16) = 10

5.
Work out:

(a) 85 (mod 7)
   (b) 97 (mod 34)   

(c) 237 (mod 237)    (d) 1765 (mod 29034)


To work out the private key d, you need to find the solution to the equation:

e × d = 1 (mod (p – 1)(q – 1))   

So we want to find d so that e × d has a remainder 1 when divided by (p – 1)(q – 1).

There is exactly solution for d due to the restrictions we placed on e – it can be found by using the Euclidean Algorithm. For any two integers, a and b, the Euclidean Algorithm finds numbers s and t such that:  a s + b t = GCD (a, b)

The GCD (Greatest Common Divisor), also known as the HCF (Highest Common Factor), of two numbers a and b is defined the largest number which divides into both a and b.

6.
(a) Work out the GCD of 60 and 105


(b) What is the GCD of any two distinct primes?

RSA works primarily on numbers – but we can convert text to numbers by enumerating each character. 


To encrypt a number p, we work out pe (mod n). 

To decrypt a number c, we work out cd (mod n).

Note, for any m, (me)d = m – this happens by the way e and d were chosen.

For a small example, let’s choose the primes 5 and 11 – the product is 55 and public key 7 (7 has no factors in common with 40 = (5 – 1)(11 – 1)).

If 7 is the public key then the private key is 23. We can verify this:

7 × 23 = 161 – this gives a remainder 1 when divided by 40.

If we want to encrypt the number 4 (say), then 

47 = 16384 = (297 × 55) + 49 = 49 (mod 55)

To decrypt:  work out 4923 = 7.49 × 1038 (3 s. f.)  Is this equal to 4 (mod 55)? It is difficult to tell – we need a way of working this out. To do, we split the index by using the rule:




pa + b= pa × pb
So, 4923 = 4916 × 494 × 492 × 491
4923 
= 368 × 362 × 36 × 49   
(mod 55)
[as 492 
= 2401 = 36 (mod 55)]

       
= 12964 × 1296 × 1764  
(mod 55)
[as 368 = (362)4 = 12964]

 
= 314 × 31 × 4


(mod 55)
[ 1296 = 31 (mod 55) ]

      
= 923521 × 124

(mod 55)

  
= 16 × 14


(mod 55)


= 224



(mod 55)


= 4



(mod 55)

So we get back to the number we started with.

7.
Here’s another example:

Let’s suppose that we pick the primes 7 and 13 and the public key 5.

Verify that 29 is the public key.

Encrypt the number 23 with the public key, then decrypt using the private key.

When using RSA on a computer, we need to make sure that we can do this kind of exponential arithmetic easily, since the numbers required for a real implementation are very large. This can be done by using the index splitting as seen above. As stated earlier, the security of RSA relies on the fact that you need to factor a large number to work out the private key. If a quick way of factoring is found, then RSA will no longer be secure.

Recommended Reading
A good introduction to cryptography is given in The Code Book by Simon Singh.

Answers

1.
The decoded message is:


THE CAESAR CIPHER IS EASY TO BREAK


The key is 17.

2.
Frequency analysis could fail if the most common letters of the cipher do not correspond to the most common letter in English. However, as there are only 25 possible ciphertexts for each plaintext, any message encrypted with the Caesar cipher is easily broken.

3.
7757 × 30713 = 238240741

4.
You should obtain similar results (all given as percentages).

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M

	8.5
	2.1
	4.5
	3.4
	11.2
	1.8
	2.5
	3.0
	7.5
	0.2
	1.1
	5.5
	3.0


	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	6.6
	7.2
	3.2
	0.2
	7.6
	5.7
	6.9
	3.6
	1.0
	1.3
	0.3
	1.8
	0.3


5.
(a) 1 
(b) 29
(c) 0 
(d) 1765

6.
(a) 15 

(b) 1

7.
7 × 13 = 91 and (7 – 1) × (13 – 1) = 72
5 × 29 = 145 = 1 (mod 72), so if 5 is the public key then 29 is the private key.

235  
= 232 × 232 × 23 
 


= 529 × 529 × 23



= 74 × 74 × 23

(mod 91)


= 5476 × 23



  
= 16 × 23

(mod 91)


= 368





= 4 


(mod 91)

429
= (46)4 × 45



= 40964 × 1024


= 14 × 23

(mod 91)


= 23


(mod 91)

Functional Programming
There are many different types of programming languages. Perhaps, the most Mathematical in flavour is functional programming. As its name suggests, a functional program is made up of a list of functions which can be evaluated in any order. The examples given use the functional language Haskell.

For example, we can define two functions which take two numbers and works out the sum and the product

sum(x,y)     = x + y

product(x,y) = x*y

We can write these functions without the brackets:

sum x y     = x + y

product x y = x*y

We can then combine these functions to give more interesting ones. For example, suppose we want to calculate 3x + 5 for a given number x, the function can be defined as:


times3_add5 x = add (product 3 x)  5
(Actually, we can define times3_add5 x = (3*x) + 5 ).

We can define a square function as:

square x = product x x   
(or square x = x*x)

To add 3 numbers, we could define:


add3 x y z = add x(add y z)   (or add(add x y)z or even x + y + z)

A more complicated function is abs(x) (often written as |x|) which works out the absolute value of a number. We can define this as:

abs x 


  | x >= 0
= x


  | x <= 0
= -x

 (Note that we use == to test for equality between two numbers as opposed to = which is reserved for function definitions).

This says that abs(x) is x if x is greater than or equal to 0, -x if x is less than or equal to 0. This style of programming is called pattern matching. Each line after the | is called a clause. The function is worked out by matching the argument x to one of the tests on the left-hand side of the clauses. The tests are matched in order from top to bottom and the computation is completed once one test is matched. If no suitable clause exists then an error is raised). Also, abs 0 matches the x >=0 clause and so the x <=0 is not considered. In the case of abs x, it doesn’t matter too much in which order the clauses occur – this is not always true.

Sometimes, we wish to give more than answer. To do this, we can return, for example, a pair of values (4,3) say or even a triple (5,4,1). As an example, let’s consider how we can work out the roots of the equation:
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The equation has complex roots if the discriminant b2 – 4ac < 0.

We can define a function:


roots(a,b,c) 


   | a == 0

= error “not quadratic”


   | d < 0

= error “has complex roots”


   | otherwise

= ((-b-s)/t,(-b+s)/t)


   where 

s = sqrt d

                        d = (b*b) – (4*a*c)






t = 2*a 

There are a few things to note about this definition. 

· If the value of a is 0 or b2 – 4ac < 0 then an error is raised. The appropriate error comment will be printed on screen.

· otherwise is used to catch any values that do not satisfy any of the other clauses – we could have used this in the last clause of the function abs.

· where can define things which are used in more than one place.

1. 
Rewrite the definition of roots without using where.

Recursive functions

Recall the definition of n! 

n! = n × (n – 1) × (n – 2) × … × 2 × 1. 

This is equivalent to:


n! = n × (n – 1)!,  with 0! = 1.

This latter definition involves the factorial on both sides of the equation – this type of equation is called a recursive equation. For example, to work out 5!, you need to  know 4!. To work out 4! involves working out 3! etc. 

The first definition of n! cannot be used to write a program. However, we can write a program using the second definition.


fact n        

  | n == 0        = 0


  | otherwise     = n * fact (n-1)

2.
(a) Check that fact 4 = 24. 

(b) What happens if you try to work out fact(-1)? Write an extra clause to catch this error for all integers that would cause this problem.

Fibonacci numbers

The Fibonacci numbers are 1,1,2,3,5,8,13,21,….. The next number is worked out by adding the previous two.

We can define a recursive function fib n that will calculate the nth Fibonacci number (where n > 0)

fib 0     = 0

fib 1     = 1

fib (n+2) = fib (n+1) + fib n

This definition uses a different way of writing pattern matching.

3.
Rewrite the definition of fact using this style of pattern matching. Can you put the clauses in any order?

The last clause makes two recursive calls to fib. Let’s work out fib 5.

fib 5 
= fib 4 + fib 3


= (fib 3 + fib 2)+(fib 2 + fib 1)


= ((fib 2 + fib 1)+(fib 1 + fib 0))+((fib 1 + fib 0)+1)


= (((fib 1 + fib 0)+(1+0))+(1+0))+((1+0)+1)


= ((1+0)+1+1)+(1+1)


= 5

This calculation uses many computational steps. It is also quite wasteful of calculations, for instance, fib 2 is worked out three separate times.

Can we do better?

Consider

newfib n = fibs(1,0,n)

where

fibs(p,q,1) = p


fibs(p,q,n) = (p+q, p, n–1) 

Consider newfib 5 
= fibs(1,0,5)



= fibs(1,1,4)




= fibs(2,1,3)




= fibs(3,2,2)




= fibs(5,3,1)




= 5

This seems a much simpler calculation. Each intermediate Fibonacci number is only worked once.

4. 
Work through the steps to obtain the 6th Fibonacci number using fib and newfib. 

Can we sure that newfib n actually computes the nth Fibonacci number.

Consider newfib n – in the calculation, fi means the ith Fibonacci number.


newfib n 
= fibs(1,0,n)


[definition of newfib]




= fibs(f1,f0,n)


[definition of f1 and f2]




= fibs(f1+f0,f1,n-1)

[definition of fibs]




= fibs(f2,f1,n-1)


[Fibonacci property]




= fibs(f2+f1,f2,n-2)

[definition of fibs]




= fibs(f3,f2,n-2)


[Fibonacci property]



= ……



= fibs(fn–1,fn–2,2)






= fibs(fn–1+fn-2,fn-1,1)

[definition of fibs]




= fibs(fn,fn–1,1)


[Fibonacci property]




= fn




[definition of fibs]




which is the nth Fibonacci number.

5. 
Write a program that will work out the nth number in the sequence 2,4,6,10,16,26,…

Recommended Reading

· Introduction to Functional Programming using Haskell by Richard Bird

· More information about Haskell (including a downloadable version) is available from the website www.haskell.org 

Answers

1. 
roots(a,b,c) 

   | a == 0

= error “not quadratic”


   | (b*b)-(4*a*c) < 0
= error “has complex roots”


   | otherwise

= ((-b-sqrt((b*b)-(4*a*c))/(2*a),

           



   (-b+sqrt((b*b)-(4*a*c))/(2*a))

Alternatively, you could define a function dis(a,b,c) = (b*b)-(4*a*c) and use it within in the definition of roots. 

2. 
(a)   fact 4 
= 4 * fact 3




= 4*3*fact 2




= 4*3*2*fact 1




= 4*3*2*1*fact 0




= 4*3*2*1*1




= 24


(b)  fact(-1)
= (-1)*fact(-2)



= (-1)*(-2)*fact(-3)


This never terminates. In fact, fact fails to terminate for any negative number.

In between the two clause, you could write:


| n < 0
     = error “negative number”

3.
fact 0 = 1
fact n = n*fact(n-1)

These clauses cannot be reversed (if they were then the program will fail to terminate as it would always match the first clause even if n = 0)

4.
newfib 6 = fibs(1,0,6)
fib 6 = fib 5 + fib 4


   = fibs(1,1,5)

= fib 4 + fib 3 + fib 3 + fib 2


   = fibs(2,1,4)

= fib 3 + fib 2 + fib 2 + fib 1 + 

       
   = fibs(3,2,3)           fib 2 + fib 1 + fib 1 + fib 0


   = fibs(5,3,2)        = fib 2 + fib 1 + fib 1 + fib 0 +


   = fibs(8,5,1)           fib 1 + fib 0 + 1 + fib 1 + 


   = 8                      fib 0 + 1 + 1 + 0

                              = fib 1 + fib 0 + 1 + 1 + 0 + 1 +

                                  0 + 1 + 1 + 0 + 2






= 1 + 0 + 7

                              = 8

5.
Here are two possible answers:


   seq1 0    = 2


   seq1 1    = 2



seq1 (n+2)   = seq1 (n+1) + seq1 n



     seq2 n  = seqs (2,2,n)



seqs (p,q,1) = p



seqs (p,q,n) = (p+q,p,n-1)

Lists

Lists are very useful objects that are often used in programming languages (particularly in functional languages). A list is a sequence of items, often numbers. The list notation used is taken from the programming language Haskell.

A list can be either:

· Empty, denoted by []

· Of the form, x:xs (said “x cons xs”), where x is a single item (called the head of the list) and xs is another list (called the tail).

For example, the list with the three elements 4,7,3 (in that order) is denoted by 4:(7:(3:[])) – this can be simplified to [4,7,3]. Note that [4,7,3] is not equal to [7,3,4] (or any other permutation of 4, 7 and 3) or to [4,4,7,3] etc. The list with a single element (say 4) is written as 4:[] = [4]. We can also have a list of lists e.g. [[0,1],[1,7,6],[],[9]] (this list has 4 elements).

Cons is a constant time operation. This means that working out (x:xs) takes the same amount of time regardless of the size of the list xs.

1. 
Which of these are equal to the list [5,8,1]?

(a) [5,1,8]

(b) 5:[8,1]

(c) [5,8]:1
(d) [5,8,1,1]


(e) [5,8]:[1]

(f) 5:8:[1]

(g) 5:8:1:[]
(h) [5]:[8]:[1]


(i) 5:8:1

(j) [[5,8,1]]

(k) [[5],[8],[1]]

Concatenation

We often want to join two lists together. We do this by using the concatenation operation (++).

++ is defined as follows:

[]     ++ ys = ys

(x:xs) ++ ys = x:(xs ++ ys)

For example, [1,2] ++ [3,4]


= (1:(2:[])) ++ [3,4]

(definition of : )


                                    = 1:((2:[]) ++ [3,4])

(definition of ++ )




= 1:2:([] ++ [3,4])

(definition of  ++ )




= 1:2:[3,4]



(definition of ++ )




= [1,2,3,4]



(definition of : )

2. 
Work out

(a) [1,2,3]++[1,2]
(b) []++[5,9]



(c) [4,3,1] ++ []
(d) 1 ++ [6,5]

The computational time taken to concatenate two lists is proportional to the length of the first list (it doesn’t depend on the second list at all). So, if the first list is very long, then the concatenation process takes a long time.

Concatenation is associative. This means for any lists xs, ys and zs:


(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Reversing a list

We often want to reverse a list. For example, the reverse of [1,5,4] is [4,5,1]. One way to define the reverse operation is:

reverse []     = []

reverse (x:xs) = reverse xs ++ [x]
 


Let’s show how to work out reverse [1,2,3] 




= reverse (1:[2,3])


(definition of : ) 



= (reverse [2,3])++[1]


(definition of reverse)



= (reverse (2:[3]))++[1]


(definition of : )



= ((reverse [3])++[2])++[1]

(definition of reverse)



= ((reverse 3:[])++[2])++[1]

(definition of : )



= (((reverse [])++[3])++[2])++[1]
(definition of reverse)



= (([]++[3]) ++ [2]) ++ [1]

(definition of reverse)



= ([3]++[2]) ++ [1]


(definition of ++ )

= (3:[]++[2]) ++ [1]


(definition of : )

= (3:([]++[2]) ++ [1]


(definition of ++ )

= (3:[2]) ++ [1]



(definition of ++ )

= 3:([2] ++ [1])



(definition of ++ )

= 3:((2:[])++[1])



(definition of : )


= 3:(2:([]++[1]))



(definition of ++ )

= 3:(2:[1])




(definition of ++ )

= [3,2,1]




(definition of : )

As you can see, there are lots of calculations involved to reverse even a simple list. The time taken to reverse a list is proportional to the square of the length of the list. To see this, consider the reversing the list of the first n integers – [1,2,3,…,n]. Following the same method as above, we obtain an expression of the form:


((…([n] ++ [n – 1] )… ++ [2]) ++ [1]

To evaluate this, we first have to concatenate a list of length 1 with a list of length 1. Then, we concatenate a list of length 2 with a list of length 1. The final calculation concatenates a list of length n – 1 with a list of length 1. Hence, the time taken to evaluate this expression is proportional to 

0 + 1 + 2 + …+ (n – 1) = ½ n (n – 1)

This expression has an n2 term which means that reverse is a very expensive operation for very long lists. Can we do any better?

Consider the following definition:

fastreverse xs = rev xs []

where

rev []     ys = ys

rev (z:zs) ys = rev zs (z:ys)

Here we introduce an extra parameter ys (which we set initially to []) which will gather the element of xs in reverse order – this parameter is called an accumulating parameter.

Let’s try fastreverse [1,2,3]



= rev [1,2,3] []


(definition of fastreverse)



= rev (1:[2,3]) []


(definition of : )



= rev [2,3] (1:[])


(definition of rev)



= rev (2:[3]) [1]


(definition of : )



= rev [3] (2:[1])


(definition of rev)



= rev (3:[]) [2,1]


(definition of : )



= rev [] (3:[2,1])


(definition of rev)



= rev [] [3,2,1]


(definition of : ) 



= [3,2,1]



(definition of rev)

This yields a much shorter calculation. As fastreverse only uses : and not ++, this means the time taken to reverse a list is proportional to the length of the list (not to the square of the length).

3. 
Reverse the list [4,3,2,1] using both reverse and fastreverse.

Other list operations

The operation map applies a function to each  elements of a list.

For example, 
map (+3) [2,7,1]   = [5,10,4]




map (*2) [5,0,8,1] = [10,0,16,2]

It is defined to be:

map f []        = []

map f (x:xs) = f(x):(map f xs)

The operation filter removes elements from the list that fail a test.

For example, 
filter (>5) [10,5,6,4,7,1] = [10,6,7]



filter (==3) [4,3,-3,3,4]  = [3,3]



filter (even) [6,11,0,-2]  = [6,0,-2]

(Note that == is needed to test for equality and /= means not equals)

The definition is:

filter t [] = []

filter t (x:xs) = if t(x)==True then x:(filter t xs) 

                                else (filter t xs)

We also have operations that give us the head and tail of a list

head (x:xs) = x

tail (x:xs) = xs

Here is a function that can work out the length of list:


length [] = 0


length (x:xs) = 1 + length xs

We can combine these functions:


map head [[1,2],[4,6,7],[5,3,2]]      = [1,4,5]


map length [[],[5,4,1],[4],[5,6,2,8]] = [0,3,1,4]


filter (>10) (map (*3) [6,3,0,2,8])   = [18,24]

4. 
Work out:

(a) map (*5) [5,0,3,4]

(b) head (map (*2) [5,40,12356])

(c) tail (filter (>3) [1,2,6,4])

(d) head (filter (<17) (map (+7) [6,4,10,9]))
5. 
Which of the following are true for any non-empty lists xs and ys, function f and test t? Give examples for those which are false.

(a) map f (tail xs) = tail (map f xs)
(b) filter t (tail xs) = tail (filter t xs)
(c) map f (reverse xs) = reverse (map f xs)

(d) filter t (reverse xs) = reverse (filter t xs)

(e) map f (xs ++ ys) = (map f xs) ++ (map f ys)

(f) filter t (xs ++ ys) = (filter t xs) ++ (filter t ys)

(g) tail (reverse xs) = reverse (tail xs)

(h) reverse (xs ++ ys) = (reverse xs) ++ (reverse ys)
(i) length (map f xs) = length xs 

(j) length (filter t xs) = length xs

Notation

As stated at the beginning, the notation we have used is taken from the programming language Haskell. Here is how the lists 1:2:3:[] and [1,2] ++ [3] (which are both equal to [1,2,3]) are displayed in the functional language ML and the logic language Prolog.

	Haskell
	ML
	Prolog

	1:2:3:[]
	1::2::3::[]
	[1|[2|[3|[]]]]

	[1,2] ++ [3]
	[1,2]@[3]
	append([1,2],[3],X)


Answers

1. 
(a) No


(b) Yes

(c) No, not a list
(d) No



    
(e) No, not a list
(f) Yes

(g) Yes


(h) No, not a list

    
(i) No, not a list
(j) No, this list only has one element (the list [5,8,1])

    
(k) No, the elements of the list are themselves lists

2. 
(a) [1,2,3,1,2]

(b) [5,9]
(c) [4,3,1]

(d) Not defined

3. 
Not all of the calculation steps are shown:

reverse [4,3,2,1] 



fastreverse [4,3,2,1] 

 = reverse(4:[3,2,1])



 = rev [4,3,2,1] []

 = (reverse (3:[2,1])) ++[4]


 = rev [3,2,1] (4:[])

 = (reverse ((2:[1])++[3]))++[4]

 = rev [2,1] (3:[4])

 = ((((reverse (1:[]))++[2])++[3])++[4]
 = rev [1] (2:[3,4])

 = ((((reverse [])++[1])++[2])++[3])++[4]
 = rev [] 1:[2,3,4]

 =((([]++[1])++[2])++[3])++[4]

 = [1,2,3,4]

 =(([1]++[2])++[3])++[4]






 =([1,2]++[3])++[4]





 =[1,2,3]++[4]







 =[1,2,3,4]

4. 
(a) [5,0,15,20]

(b) 10

(c) [4]

(d) 13

5. 
(a) True



(b) False, e.g.
filter (>1) (tail [1,3,4]) = [3,4]




tail(filter (>1) [1,3,4]) = [4]



 

(c) True

(d) True

(e) True

(f) True

(g) False, e.g.
reverse (tail [1,2,3]) = reverse [2,3] = [3,2]



tail (reverse [1,2,3]) = tail [3,2,1]  = [2,1]

(h) False, e.g.  
reverse ([1]++[2]) = reverse [1,2] = [2,1]



(reverse [1] ++ reverse [2]) = [1] ++ [2] = [1,2]


In fact, reverse (xs ++ ys) = (reverse ys) ++ (reverse xs)

(i) True


(j) False e.g.
length (filter (>3) [2,3,4]) = length ([4]) = 1




length [2,3,4] = 3
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