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the centenary of the Lebesgue integral

G.T. Q. HOARE and N. J. LORD.

“Afier Jordan came Lebesgue, nd we enter on the subject of mother
Book', declared Bourbaki [1 p. 681, J.C. Burkill remarked in [2] It cannot
be doubed that (Lebesgue’s thesis) i one of the finest which any
‘mathemtician has ever writien” Lotve in [3] picturesquely sets the scene
for us ths, " the Archimedes of the extension (ic. modem theary of
mezsure) period was Henri Lebesgue. He took the decisive siep in his thesis

In fact contemporary (measure. theory) sl dances o Lebesgue's
tunes.” Arguably, before 1902, mathematicians had yet 1o develop a theary
of integration; Lebesgue's great thesis of that yeur changed this stte of
affairs imevocably. In t, difficultcs which had begun 1o plague the
Riemannn inegral were swept away 1 Lebesgue boldly extended the
concept of the imegral by what laer came 10 be regarded 2 2 completion
process & profound 4 tht leading from the rational numbers to th reals.
Lebesgue crested no School but his influence on twemtieth cenury
muthematics was. profound. In this aricle celebrating the cemienary of
Lebesgues thesis, we look frst a Lebesgue's lfe and then in more detal 2t
hisseminal work on integration.

Henr Léon Lebesgue was bom at Beauvais, some fifty milks north of
Puris, o 28 June 1875. (Sce Endnote 1) The serious imtellecual interests
of his fuher, 2 typographical worker and his mother, an clementary
schoolteacher, were reflecied in the subsiantial family lbrary. From 1893
il 1897 he attended the Ecole Nomale Supérieure in Pari from which he
sraduated third behind less able mathematicians. Already he showed an
independent cast of mind, questioning the statements of professars and
woiding sudies he found minteresting. Indeed, in one of his kst
monographs [4, CWI63], Lebesgue even recalls an episode from his
schooldays 2t the College de Beauvai in which he was disturbed by, and
sought stremuously 1o refute, the paradox which purports o show hat the
sum of the lengths of two sides of 2 tiangle is cqual 1o the length of the
hind: sce Figure 1

In onder o furthe his sudics Lebesgue worked 1 an ssistant brarian
ot the Ecole unil 1899, Here he became acquained wih the wark of
another recent. graduate, René Baire, whose imovative work on the
dlssification of discontinuous functions both reinvigorated real vaiable
theory and clearly influenced Lebesgue who gave due prominence to Baire's
iews in his thesis. Before this, in 1895, Lebesgue's fist paper was
published in which he gave a simpler proof of the Weierswrass
approximation theorem, declaring that he thought existing proofs were
umnecessaily claborate [4, CW1). It is worth oulining Lebesgue's proof
because it epitomises his intuitive, geometrical style of reasoning and his
uncanny ability to perceive the heart of the matter which often led implicily
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FIGURE 1: The imgle paradox. The zig-2ag roue from 10 C_ long the sides of
soall tingles smilar 10 ABC. bas length AB + AC. AS the mumber of smnall
timgles increases. the zig 2ag fout. length AB + AC. bas s liit the direct route.
length €.

o his amvicipating fuure generalisaions — in this cuse, the Stone-
Weierstrass theorem [5, 6]. Recall that at issue here is 1o show that any
continuous function on 3 closd, bounded interval may be arbitrarly well
approximated by polynomials. Since. by wiform continity, any
continuous funciion is uniformly & dose @ we ke to 3 “zigzsg’
(piecowise-linear) function, it suffces o approximate the latier by
polynomials. But a zig zag function i a linesr combination of the functions
x5x—c, x>|x—c| (¢ consan. Fmlly then, it s enovsh 10
approximate | x| uniformly by polynomials — which follows by scaling and
et e Woomial s for (1-(1-)" converges 10 | for
slet

From 1899 10 1902 Lebesgue held 2 tesching positon at the Lyoée
Cenal in Nancy and during this period five short papers, essentally
research amnouncemenss, sppeared n the Compres Rendis 14, CW3.7]
These consituted the bsis for his doctorslthesis and it was i th (it that
Lebesgue proclaimed his generalisaton of the Riemann integral. But even
the fint paper created  stir. Recal that a developable surface (such & &
ylinder or cone) is 3 paricular kind of uled surface in which the tangent
plane is constant along each generaiing line. Lebesgue gave examples of
non developable surfaces without continuously uming tangent panes which
are nevertheles “applicable o a plane” in the sene that there s 3 one-to-one
length preserving map. from the surface 1o F°. This paper scandalised
Darboux, and wis iniilly opposed by Hermite who was dleary sill
senstive about “this lamentable plague.of funciions which do not have
derivaives’. The spur for it spparenly came when Lebesgue, on
overhearing 4 group. of studemts refemring to the “fact that applicable
surfices e the sme  developable ones, produced a_crmpled
handkerchief and declared srcasically that it must be developabl since it
was manifesly spplcsble 0.3 plane

In spite of his heavy teaching load at Nancy, however, Lebesgue
continued his research and in 1902 he received his dociorate from the
Sorhonne for the thess for which he s justly famed. We have menioned
he influence of Baire. Lebesgue was sl influenced by & mumber of laie
ninetcenth century French mathemticians such 3 Camille Jordan who had
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‘An especial inpiraton was Emile Borel, “he Endonus of the exension
period” 3] who, having joned the faculy of the Ecole Nomyle Supéricure
T 1596, had in 1898 explicily postulaed the properties that the “mesure’
of aset should have. (tn tis postlatonal approach, which Lebesgue would
later stres in connection wih theories of itegration, boih Borel and he
‘were influenced by the work of  fellow sudent,Jules Drach [9, p. 1071

“The challenge, then, was o give a defniion of the measure of a et and
the imegral of 4 funcion which sustied the propertes postlated.
Lebesgue, W. H. Young and Visli succeeded independently in this tsk
and although their fommulations were different they were equivalent
Lebesgue's, arguibly the simplest nd most elegant, appeared. fint and
became. pre-eminent; Young acknowledged s much by inroducing the
sobriquet “Lebesgue integrl” for Lebesguc’s achievement. It should be
noted that, by ssigning messure zero fo every subset of 3 Borel et of
mesure 2ero, Lebesgue succeeded in extending memurabiiy 10  arger
dliss of sets than those constrcted by Borel Here, perhaps, esides the
‘e of comention berween Borel and Lebesgue which erpted into a full-
sle dispute over prioriy after the First World War, of which more laer.
Strongly influenced by Borels ideas, Lebesgue nevertheless must take the
cndit for applying Borel-Lebesgue notions of mesurability to ntegrtion
The key charcierisic of Borel-Lebesgue messurability i countable
vy ~ the measure of 3 countable disjoint union of messursble ses is
the (nfinite) sum of the memures of he consttuent ses. Lebesgue was able
1o explit this, for example, in his Bounded Convergence Theorem (BCT —
see below), & result the smplicty and generaliy of which elude the
Riemann integral

Lebesgue's construction of the integral was fundamentally different
from those of all his predecessors and, i readers wil probably know, his
bl but simple idea was o pariion the ange of & function rathe than
s domin of definition 2 Riemamn had done. (See Figure 3 below.) In his
regand Lebesgue was wont 1o quote & parable sbout a shopkeeper totllng
e receipts 4t the end of the day [I, p.72). The Riemann imegrsl
conresponds o ust adding up the receipts in onder but the Lebesgue integrsl
comesponds 1o fint soring the receips by denominaton, totaling the
‘mount of each denomination, nd then ading up th subtotas

itally there was some opposiion 1o Lebesgue’s idess and Lebesgue
was somewhat heitant when i came 10 present his thesis since he himself
had doubis sbou the worth of his work. Picard and Goursat were the
‘mathematicians on th thesis commitice. Others would soon read the thesis
‘nd appreciste i, wibutes came from Jondan, Picard, Montel and Lotve, in
panicula. Montel suid, (Lebesgue) excelled in fooking at okl hings wilh
ew eyes. He knew the virtue of sienive examination of n example, of an
‘momly, o an exception. He ws suspicious of o0 general heories whose
fomalim and verbalism repelled him. He had 4 geometric vision of
mathematical facts and prefemred synhetic isights which sy and





[image: image4.png]nourish the mind fo aalytic proofs which reassre . 7], I was, perhaps,
pprehensivenes s 10 the rescions o his colleagues hat led 1o i thess
Inégrale, longuewr, aire teing published in an lalian joural, Al di
Mathenatica 3 (1902) pp. 231359 [4, CWO], There ws an scive School
of lalan real nalysts ch s Din, Arzel and Feano who were exgerly
Spplying Cantor'sidecs on st heory and i was lslian mthematicians such
Vi, Levi and Fubini who were among the first enhusistially 10 ke
up and use Lebesgue's idess.

Impressive s it s, Lebesgues thesis fsiled 10 resolve cerain
diffculies. For example, he wes wnable 10 secure  flly suistactory
Fundamental Theorem of Calguls (FTC) for s ntegrl in cther of the
foms £(13f) = £ () and LF = F(b) - F(a). During the academic
yeur 1902-3, however, Lebesgue was invted 10 give the Cours Peccot (he
photograph of Lebesgue on the cover dates from around thi time). This
Course was an occasion for a young mathematican 0 show of s work and
conferred considersbe prestige on the person slected o give it. During the
perid concemed Lebesgue succeeded i resolving some o the quesions
left open by his thess and in making futher discoveries. For example, his
futher work on the FTC and on curve rectficaion led him 10 he genral
resul that & conimuous monotonic function possesses @ fnite dertvative
abost everywiere (s, hat s xcepton 2 et of Lebesgue measure zero or
mill ser, (The . locution was i fuct ntroduced by Lebesgue himsdl: sce
19, p. 1791) Much of the new materal, including satsactory versions of
both forms o the FTC, was pesented in the lectue course and publshed a5
Legons sur fintegration et larecherche des fnctions primitves 18] the last
chapter of which was devoted t0 @ ushed sccount of Lebesgue'stheary of
megrtion. There were some gaps and insccurscies, noiced sspecally by
the lulian mhematician Beppo Levi, but Lebesgue subsequently wis sbie
10 remedy these. We note 100 that the BCT and it peneralsaton, the
Dominaied Comvergence Theorem, publshed repectively in 1904 (i [8)
and 1905 (in 14, CW36]) were pivotal in Lebesgue' orginal reament of
megraion

In 1912 Denjoy, using the transfinite methods pioneered by Baire and
prompred by Lebepue’s suggesive observations concemning e G
Which £ s fntevalued but no necesarly ntegrable (and thus ot covered
by his FIO), succeshuly developed totlisation’, the most_general
canception of integration hitherto. Using this, [ F = F(b) ~ F () was
secured just onthe bsisthat £ s continuous o [, 5] and differemrisble on
. b). The second aditin of Legons [9, 10), etsins the same structure a5
the original, but Lebesgue update the chipters on Lebesgue tegraton and
adds chapters on Denjoy totslisation and on the Stees integrl. He also
ippends n intrestingly openminded sppendix on the legitimacy of
ransinite induction, which he slmost spologises for emplaying in his
scoount of Denjoys work. In ths case his hesitancy was. prescient
Romanovski in 1932 showed how ransfinie medhods could here b voided

it}





[image: image5.png]By the end o the first decade of the twemicth cemury the power and
besury of Lebesgue's concepion of interation had been sccepted by the
mathemtical community and in due course his idess were rehned,
seneralised, extended nd applied in o plthors of sinations (3], Fubinis
theorem on repeated integrls (1907) was a nowble eurly wumph for
Lebesgue's methods. And the use of Lebesgue itegrtion marked s nming
point n the heory of rigonomeri serie and i potential heory. Lebesgue
made significant conmibutions o both of these fieds. [n particolar, he
published & substantal fome on the former topic in 1906 [12], sgan bised
s series of lectures,thistim the Cours Peccor o 1904-5. One highight
was tha,explorting his BCT. he was abe to sfim Fourier’ intution that if
4 bounded funcion can be represented by some tigonomeric seres, then
{hatseies must e the orinary Fourie sris ortht unction

In 1910 Lebesgue pubihed [4, CWAS], an important memair in which
e extended his heory of imegrion and. diferentition o 1 dimensionsl
Eucldean space. Saring wih the observtion that, for fixed . the
prescription F(E) = Jef (x)dx gives a countably additive set function on
the mecsurable subsets £ o B which i absaltely contimuous in the semve
ihat i the mesmures of ,fend 10 210, then F (£, lso tends 0 7o, he was
able to show conversely that any such set function could be represented in
this form where, with a suitable notion of derivative, f(x) = F'(x).
Bulding on Lebesgue's wark, Radon in 1913 was able fo extend this
representaton thearem fo any par of countably sddiive et funcions
Sanding in he same reltion 1o ssch ther s # and Lebesgue messure

above. In so doing he provided 2 natural generalisation of the integral
which subsumed both the Lebesgue and Stieltes integrals: the scene was.
then set for the ultimate vindication of Lebesgue's ideas in the framenwork of
absiract measure theory, with applications a5 diverse 3 Kolmogorov's
axiomatisation of probabiliy theory, Haar measure on topological groups,
Hausdorff measure for fracials and Wiener measure for Brownian motion
15,131

In 1902 Lebesgue had secured his first university sppoinment 3t
Rennes. Following this, he taught at Poitiers from 1906 1 1910. He then
retumed 1o Paris & lecturer at the Sorbonne and was eventually elected 10 o
Chuair in the applications of geometry o analysis there in 1919. In 1921,
however, he became professor of mathematics at the College de France, &
post he was to oceupy for the rest of his lfe. During the First World War he.
headed a mathematical commission, a section of the research advisory group
for the war ministry, which investigated ballistic problems.

‘s we hinted carler, all was not well berween Borel and Lebesgue and
their long-standing friendship deteriorated unl it finally collapsed, 3t
Lebesgue's instgation, in 1917. The evidence we have is provided by letiers
preserved at the Insitite Poincaré, which Lebesgue wrote 1 Borel starting.
in 1901 The reasans, both psychological and scientific, are complex. To
begin with, Borel, along with such luminaries a5 Kranecker and Poincars,





[image: image6.png]was a construcivit, 50 he rejected Lebesgue's generalistion of his measure
concept 2 having no mening since it was non-comstnuciive. Lebesgue
pointed out that his memure was welldefined and consisent whereas
Borel's was but scanily presented. One should recall that Zermelo's axiom
of choice had appeared in 1904 and led 1o a lively debate berween
Hadamard and the wiptych of Baire, Borel and Lebesgue which resulied in
the publicaton of five leters including [4, CW19].

Here Lebesgue opined that the existence of an entity is proven when it
has been defined and that Zemnelo's somewhat vegue e of the word
“existence’ meant freedom from contradiction. Befare this, in his Legons,
Lebesgue inroduces his integral by postlating six desirable conditons it
must satsfy and sserts that this definiton belongs 10 the clss of those
which he calls descriptve. In such definiions one gives the charactristic
properties of the abject one wishes o define. Such a definiton i subject 10
certain conditions — it is necessary that he given condition are consistent
In construcive definitions ane sets out the operations 10 be underizken in
onder 0 obtain the object ane wishes to define. When one announces such a
definition it is necessary t show that the operations indicated are possible
‘As for the debate, the tiptych were united in thei opposition 0 the axiom
of choice and sceptical about the intlligibliy of the sets arising from an
arbitrary “lawless' election of elements, but Lebesgue was no construcivist
and took a middle-of the road position berween the constructivists and the
fomnalists. Thus, owards the end of his life, wdoping  charcterstcally
prgmatic sandpoint, he came 1o regard the 2xiom of choice @ a valuable
ool in rescarch, despite continuing doubis about s logical stas
4, CWIST). Mark Kac in [14] reltes 1n aneodote which gives an echo of
these foundaional issves and 4 glimpse of Lebesgue's sense of humour. On
2 viit o Lwéw in May 1938 1o reeive an honorary dociorate, Lebesgue
was the guest of honour 1t  reception n the Scotish Café. The aiter, not
ralising that Lebesgue wes 4 visior, gave him the menu in Polish
Lebesgue sudied the menu with wmost seriousness before amnouncing.
“Merci, je ne mange que des choses bien definies.”

Although there were signs of strain between the protagonists s fr back
25 1903 when one can detect a change of fone in the leters, Lebesgue was
particularly stung by the contents of two papers that appeared in 1912 in
‘which Borel expounds in a new way the dfiniions of medsure and itegrl
He claims that this theory of itegration is 4 simple corollry of his measure
concept and s superior 10 Lebesgues [2.p. 487). Furhermore, Barel lays
claim 10 a share of the credit for the new approaches t0 ntegration. We can
understand Lebesgues rustarion at Borel's pretensions but we can lso well
imagine Borel's likely biteress at having allowed 2 definiton of the
imegrl 1o escape when it seemed within his reach. These claims are
forcibly rebuted by Lebesgue in his clear, cogent style in [4, CW72], 2
survey paper he wis drafing at about the tme their riendship ended. As
for priority, nowhere, he asserts, i there any mention of integration in
Borel's 1898 paper which introduced Borel's ideas on measure; indeed,





[image: image7.png]Borel was primarily interested in applying the later 1 problems in the
theary of analytic funciions.

Bourbaki, when discussing the enormous difficulties of soring out
matters of priorty in the sevemeenth century work on calculus, remarks,
“What do we conclude except that it is by hardly noticeable transtions that
the discovery has been made and that  dispute of priority in this context
much resembles 2 quarel berween 2 violin and rombone 3 1 the exact
moment when some theme gppears in @ symphony? .. Each player is
playing his piece with his own sound but nobody is the master of the themes.
heis producing.” [1, . p. 173]. This was not the point of view of Lebesgue
who felt personally atiacked at the time of his candidature for the post of
professar at the Sorbonne and of his clection o [Académie des Sciences!
(We note in pussing that Borel had been clected 10  personal Chair in the
theary of functions at the Sorbomne in 1909)

In the letiers we discem futher causes of friction and Lebesgue's
propensity for quarrelling with other mathematicians. He squabbled with
Baire, for example, 15 1o who should give the Cours Peccot of 19034,
Imiatingly, possibly, for Lebesgue, Baire was supported by Borel who was.
loyal 10 him throughout his life. Again, there were skimishes over a
conribution Lebesgue wis 1o make 1o [Encyclopédie des Sciences
Mathématiques Pures et Appliquées reporing the new developments in
analysis, but it was perhaps the War which brought maters 1© 3 head.
Lebesgue resented the idea of working under Borel's direction and felt he
was being reduced to a mere calculator working on problems of physics, an
area in which he felt lile competence. Lebesgue ws the consummate pure
mathematician whereas Borel, as carly 8 1905, was switching
applications such as game theary and probability. There is evidence, 100, of
Lebesgue's anti-militarism; 3t the time of the Dreyfus affair we find his
name among the fist st of public signatures in support of Zolas article
Jaccuse whereas Borel' is noticeably absent. What emerges from all his is
‘@ rather touchy character with 2 tormented sensitivity. By 1922, however,
when Lebesgue prepared 2 resumé of his work [4, CW90), it seems that he
very much regretied his conflicts with Baire and Borel: indeed, Lebesgue
was a member of the commitiee which organised Borel's scientific jubile.
In an carly leter t Borel he admited suscepuibilty to ceain matters but
above al 1o those concerning maney. His parents were not rich and he
married 4 young lady from a humble background. Was Lebesgue thus
envious of his well-comnected, prestigious senior, instigator of the
Collection Borel (albeit a series in which Lebesgue's manographs [8, 12]
appeared), who came from the upper siratum of society and married into the
sume miliew? While Lebesgue generously acknowledged Borel's essential
fist siep in defining messure (for example in [4, CW72), Borel, by
contrast, had yet 1o acknowledge Lebesgue's achievements, even after the
second edition of the Legons appeared in 1925,

By 1910, Lebesgue's involvement in the subscquent development of the
branch of analysis he had done so much o initate declined, the greamess of





[image: image8.png]his contibution seemingly overshadowing his laer activities. Perbaps he
feared what be later wrote in [4, CWSS], *.. reduced 10 general hearies,
mathematics would be a beautiful form without content. It would die
quickly. 2 many branches of our science have died just at the time when
seneral esults seemed to guarantee them @ new activiy; | cie, s examples,
the theary of invariants, and elliptic funciions — so completely gnored since
Weientrass presented the generl theorems about them. He nced not have
warried; even 50, he began 10 cast his net more widely. We ot that, much
2 he was preoccupied inally by the theory of integration, Lebesgue did
sgnificant work on the sructure of sets and funciions which was later
developed by the Moscow and Polish Schools. The Polish mathematicians
in panicular revered Lebesgue; Janiszewski, the founding ditor of
Fundamenta Mathemaricae, had taken his doctorate under Lebesgue in 1911
and Lebesgue wroke @ sensitive, welcoming review of the opening volumes
of Fundamenta in 1922 [4, CW87]. Lebesgue's work in potenial theary
underlned his appreciation of the topological subletes involved. Thus in
1912 [4, CWS6] he was able 1o isolate  propenty (egulariry) of the
boundary poins of 4 region which was necessary and. sufficient for the
Dirichlet problem for that region slays 1 have 4 solution. He followed
tis in 1913 [4, CWSS] wih a specific exumple of an_imegular or
excepiional boundry point of 4 bounded open region in ', namely the
Vertex of that sharp indentation into he unit sphere formed by removing
those points satisfying (< + )'* < exp(~1/2),z > 0. This use of what
is now known s a Lebesgue spine seilled 4 long-running debate sbout
‘whether the nature ofthe boundary o 4 region afected the solvabiliy of the
Dirichlet problem [15, p. 46].

In[9, pp. 44-45), Lebesgue presented a simplificaton of the procedure
for constructing space-flling Peano curves and this motivated him 10 tackle
the “invariance of dimension” problem. The issue here s o give 4
topological definiton of dimension which @signs the sume mumber 1
homeomorphic spaces and assigns the value 1 o " Lebesgue introduced
he notion of covering dimension, built on the prosaic observation that 4
bondd brick wall i 2 dimensional precisely because o point of the wall is
in contact with more than 2 + 1 bricks (and 3 s the smallest number
possible here): see [16]. His direct, intitive proof of the ivariance of
dimension was oulined n the form of 2 leter to the Editor [4, CWS2 in the
same 1911 issue of Marhematische Amalen 1 Brouwers indirect proof
Which was 2 spectacular spplicaion of his pioncering work on the
topological degree of 2 mapping. Browwer was furious atthe sketchy nature
of Lebesguc's argument and challenged him 1o plog the gaps. This
Lebesgue initally declined to do; indeed, he subsequently wsed Brouwers
echniques o extend the Jordan curve theorem to higher dimensions in work
on the separation propertis of sets which foreshadowed the Alexander
duality theorem [4, CWS3]. This time, however,there was an unexpecied
beneit from Lebesgue's stubbormness: it purred Brouwer on o some of his
finest work in opology [46]. Eventually in 1921, in his first contibution 10





[image: image9.png]Fundamenta Mathemaricae |4, CW84], Lebesgue conceded the inadequacy
of his 1911 demonsiraion which wose from his over-reliance on
‘seometrical invuition. The final patching-up of his proof appeared in 4,
WO see [, pp. 84-85]

What is now called the Heine-Borel-Lebesgue thearem’, or 4 variant
thercof, has 2 chequered history. Borel proved that every couniable open
cover of [a, b] hs a finite subcover. Lebesgue extended this result 1 an
arbitrary open cover and thercby introduced the modem definition of
compactness. In the course of his proof, he esablished the exisience of
Lebesgue mumber for the cover, that i,  fixed ¢ > O wih the property that
for every @ < x < b the interval of width ¢ contred on x is @ subset of at
least one of the covering set. Earier, Heine had in essence wsed the finite
subcover property in showing that all continuous functions on [a, b] e
uniformly continuous [5]. Lebesgue also had a hand in what is now called
the Tietze-Urysahn theorem (ihat & function continuous on 4 closed subset
may be extended 10 4 continuous function on the whole space). This result
is wivial for B (when lincar interpolation scross the open intervals
comprising the complemen of the closed set suffices); Lebesgue extended it
to B2 in [4, CW33], Tietze 10 general metic spaces and Urysohm —
definitivly — t0 (nomal) topological spaces.

Many honours came Lebesgue's way. He ook the Prix Houllevique in
1912, the Prix Poncelet in 1914 and the Prix Suintour in 1917. As well s
becoming President of the French Mathematical Society, he was, in 1922,
clected to the French Academy of Sciences, following Jordan. By this time

he had published some 90 books and papers on a wide variety of topics.
‘Subscquently, he became an honorary member of the London Mathematical
Society in 1924 and was elected 2 foreign member of the Royal Society in
1934,

Throughout his life Lebesgue took his teaching commitmens seriously
and gave of his time unstintingly 1 his students. His views on teaching
were s distinctive and firmly held 25 those on mathematical research. He
believed that 1o give mathematics life it should be presented in 2 genetic
style which entailed both using the history of ideas 1o explain mathematical
conceps and endeavouring 1o present things simply, not in order 1o falsify.
but 10 strip away inessentias. Lebesgue neaily summed up the lecturers
role thus: “The only instruction which a professor cun give, in my opinion, is
0 think in front of his students." [17). To achieve this, he believed that the
teacher should constandy enrich his own mathematical culture and at the
sume time refuse 1o regurgitate year-on-year his lectures and the routines of
previous pedagogues and textbooks. According 10 one of his students,
Lucienne Felix, this is what Lebesgue meant when he said he refused 1o
know’ the mathematics he tavght. He believed that sudents “gain nothing
from a solution that is satisfying from the logical, but not from the human,
point of view" [17].

‘These sentiments are evident in the structure of Legons, which carefully
places Lebesgue's theory of integration in the context of carlier srudies, and
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secking 1o establish 2 dialogue with the reader. This rather casual syle
occasionally let him down; ss Burkil tactfully put it in [2], ‘Lebesgue
slipped into inaceuracy more ofien than one would have expected of 5o fine
‘2 mathematician and 5o lucid a write; his errors are always on the side of
Supposing some argument 1o be simpler than it eally is. His most famous.
ertor occurred in an carly paper [4, CW23] where he used the “fact” that the
projection (onto a line) of the intersection of a family of plane sets is the
intersection of their projections. This is wivially false (hink of a stack of
plates!). But, in the context of the paper, the realisation that the contimous
image of a Borel set is not necessarily Borel led t the reation of the Lusin-
‘Souslin theary of analytic sets — clas of sets intermediate berween Borel
‘measurable and Lebesgue measurable sets, where a subset of the -axis is
analytic if it s the projection (onto the -axs) of  Borel subset of the xy.
plane [18, para. 18], Perhaps rarher cheekily, Lusin ssked Lebesgue o write
the preface 10 his famous book on analytic ets [19]; there Lebesgue avers.
that his oversight was the most fruitful error he ever commitied!

In the lust twenty years of his life Lebesgue wrote on what he funcied,
ofien wih an exposiory, philosophical, pedagogical or historical
perspeciive and mainly on topics of an elementary nature. Scanning the
fitls one i reminded of his regard for geomery, the mainspring of so much
of his thought — see, for example, Figure 2. Ii s fascinating 1o note that
towards the end of his life he wrote two papers on Morley's celebrated
theorem on the angle trisectors of  triangle and its extensions.

“Humane, profoundly humane, he had a nobility of heart ind thought, a
delicate sensitivity, a discrete and inexhaustible generosity.” wrote Paul
Montel in his obituary notice for Lebesgue [7). Lebesgue died an 26 July.
1941, survived by his mother, wife, 4 son and 4 daughter. We end with
Burkills encomium of Lebesgue in [2], ‘His work lay almost entirly in one
fild —the theory of real funcrions; in that fiekd he s supreme.”

Lebesgue's work on integration

Al being well, and the well not 100 deep, by the end of a Sixth Form
‘mathematics course sudents awain a level of perception of integration
roughly akin 10 that of @ mathematician of the lute eighteenth century,
namely:

+ “lotegration s the inverse of differeniation’ with the two
satements this connotes,
(FTC.1) You can check an integraton by differentiating,
ie. £(r@a) = 7.
(FTC2) 1fyou can ind a primive funcion F (1) with
S0 = F (@, then Lf (9dx = F ) - Fa.





[image: image11.png]FIGURE 2. Lebesgue's covering problem [44. 45. p 99]: What is the smuallest
possibe arca o a lanina with the property thar. when suitably orinted. it wil cover
my plane figure of it iameter? It s known thatsuch 4 s iiniser exists, hut
it neither known whit itsshape s nor whether it s unique. Early candidates were
@) & bexagon of it width, area O.6S0S; (i) this bexagon with two fsosceles
timgles removed. area 0.845299: (i) this octagon with & rounded-off vertex. V.
rising from are of adius | centred at Xand ¥, area 0844138,

+ “Systematic inegration s harder and less systematicthan
sy stematic differemiation.”
For there are surprises such as [ for n = —1 and intuition
2510 promising methods of ttack i much harder to build.
“Integrarion can be used o fnd areas under graphs,etc.
Indead the Leibnizian notation | e is 2 constant reminder of
his. And, i al el faik, 4 definte integral can be evaluated
‘mumerically by approximating the relevant area under the graph.
The search for primitive functions i essentially 2 quest for an lgorithm
o determine which clementary functions e primitives. (Loosely speaking.
n clementary function is any function that can be obained by pressing 4





[image: image12.png]finite sequence of buttons on a scientific calculator) Such an algorithm,
building on carler investigations by Liowille in the 18305, was found by
Risch in the 19605 and pruned versions of it are employed in current
computer algebra packiges. As & esult one can affirm caregoricaly that an
Clementary primitive doss not exit for exp (), but the theary s subile: for
example fanx and x sin ¢ both have such primitives but &N T and x fan x
donot — see [20]. For some students this leaves an unsatisfactory taste in
the mouthc G H. Hardy in his 1928 Gibbs Lecture pus it into perspective
hus, “We must remember that & natural question docs not always seem, on
fuller reflecton, 1 have been a reasonable one. It i naural fo sk for 3
finie formula fo | exp (~?) . If we fail, i i ot because of ur supidity,
but because the warld does not happen to have been made that way. [47]

In the absence of a prmitive, any definition of an integral is morivated
by its conception 1 the area under a curve. Such 2 defniton thus switches
the satus of (FIC.12) to theoroms requiring jstification.  Riemann's
definition of 1854, for a bounded function f on a bounded interval [a, b],
held sway for the remainder of the nineteenth century:

Make 2 pariton, P, of [a, ] o a finte mumber of disjoint

imervals | L ], of  maximum length P wite

m o= inf{f(0):x € L}, M, = sup{f(x) :x e L} with x, any

clementof /, and denote the length of 1, by | |

Then  supaip Em|4| = limupy oo Em |4 |

and  supap EM 1| = limup o EM L.

(RLY) s Ricmann iniegrabie i these two limits are equal.

®12) In s e the lmis we do equd w
limp o 2 0|1 |

Riemann showed further that his condition for integrabilty can be

refomulated a:

(RL3)  For every 8 > 0, the set S, of poins a which the
oscillation (see Endnote 2) of f exceeds & has “outer
content zero, ie. it may be covered by finiiely many
tervals of asbitrarily small total length.

The bokdness of Riemann's deinition was that it gave a citrion for an
arbitrary function 1© be declared imegrable and it mesmerised his
contemporaries such 1 Weierstrass who saw it 1 the ‘most general
conceivable definition of ... the wea defined by the values of f(c)
[23,p.67). The modem conception of 3 function a8 an abitrary
conespondence of values, rather than 4 formula-based rule, and the
associated shift from merely tusting geometical inuiion in aumens 10
exploring the full logical import of definitons, had slowly emerged
following the contoversial discoveries (by . Bernoulli nd Fourier
respectively) that the apparently abitrary iniial conditions appertaining 10
solutons of the wave nd heat equations could be expressed s Fourier
series. Indeed, on [, ], writing
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Fourier was able to pick out the coefficient b, for example, by:
F82) [%f (9 sinmede =
V- bavsinme di + 17 (S, cosnsinme + b, sinncsine)

0+ XL o cosnsinme + by sin e sinme)de
= b,

since all but ane of these integrals s zero. It gradually became apparent,
however, that the issues of the convergence of the Fourier seric, the
exisience of the relevant integrls and the valdity of the interchange of the
infinite sum with integration all required. careful elucidation. Riemann, in
fact, introduced his integral dlmost 1 an wide in his work on igonomeiric
series. In [21] Lavgwitz persussively argues that he was led 1o (RL3) by the
desirability for convergence purposes of having a,, b, — 0 in (FS.1)
(RL3) guarantees that, away from an arbitrarily small set of points where f
oscilltes significanty, the increasingly rapid alierations of sinm &
> e in (FS.2) swamp the variations i £ (See also Endnote 7.

Since points of continuity are just those of zero oscilaion, by (RL3)
every continuous function i Riemann integrable 1 also i every manotonic
funciion. B, although Riemamn himself had given an clegant example of
an imegrable function that was discontinous on 4 dense set of rationdls,
22,23, p. 19-20], i looked s i everywhere discontinuous functions such
as Dirichlet's function (taking values 1 or 0 at x according 1o whether s
rtional or imational) would forever li beyond the pale. Atention focused
on the set of discontinuity points, Uy, and it looked 1 if the right
question wis, ‘How negligible did he sets S, have 1o be for @ function t be
automatically inegrable?”. Uil the fog cleared in he early years of the
wentieth century with a clearer sppreciation of the distincions between
contrasing notions of smallncss i terms of topology, measure theory and
cardinality, there was considerable confusion 2 1o which was appropriate
here. Such confusion is readily understandable in view of the suggestive
analogies that exist [24]. For a lng time it looked as if ‘topologically
small” (nowhere dense, ee Endnote 3) held the key. Certinly for (RL3) to
hold cach S has o be nowhere dense, but the conerse wserion med out
10 be flse following the discovery by H. 1. S. Smith in 1875 of what ater
became known @ Cantor-ike sets. Recall that the odinary Cantor set is
constructed from [0, 1] by first removing the open middle third, then the
open middle third from the remaining two subintervals, etc: the closed
nowhere dense nul set that ulimately remains consists of thase mumbers
having just 0,2 in thei temary expansion — an uncountable s since the
recipe f(£a,37) = £ 4a,2" maps the Cantor set onto [0, 1]. If we modify
he construction by removing the open middle third, then two open intervals
of total length 1/3% etc., we obiain 2 closed nowhere dense set with non-
zero outer contens; see Endnote 3 and [25,p.74]. The characteristic





[image: image14.png]funcion of such o et is ot Riemam imegrabes in (R13), S for
0< <1 cannot be covered by intervals of total length less than +
depite the ot s nowhere e

Gradually though, he corect measure heareic perspecive began 1
amerge In e course of s ivesigarons o sl e comimaton snd
the convergence sets of series such as X2 (x — a,J”" (with (a,) dense in
16, 5 Boel came 1 spprecoe he iy of ssighing ser0 rwisure’ 10
T ivergence et which can b covered by 4 coumable il of tervals
o bty small il lengih — cven hough, comtoeraly, S &
om0, h divergence st is dene hence lage n 3 opoloia snse
String by asigning o terval o engih. e oo howed how 10 g
e 1o Barl st - hon fat cun b frmed from open ubienal of
T 51 by complementaion s counable union. (Sine any open et s &
Countiie union of 1 companent ievals, couma bl G0y was frced

Lebesguc' saring poin was 1o asigh an auter measre o very subst
E of 0.6l by m(® = wnSIL1E € U Limervas), an mer
measire. by complementaion, mE) = b a - m(E) where £ s the
complement of £ in [a. b], and 1o declare E (Lebesgue) measurable with
measure m(E) if mo(E) = m(E) = m(E). The collection of all such
oearable s, M, s closed under complementain ad sounable urions
nd e measire n(E) signed o these e i coumably sidive
Morcover 1 includes all s wih o Jordan content (e iy addiie
precuor o Borel meaure ssigned fhe me ot [0 3 ot a i
Gonur) s iy, larger clss of i than he s f Borel
S o Gemomsrte i Lebsgie howed e, iven any meanrable st
E. there st Borel sen 8, By having the same messure = £ wilh
B S E o B tht iy ik B~ £ and £ ~ B, b mil. At s gance
e th ditincion beween Borel e and Lebesgoe meisurable s eems
% much ado shout (esure) mthing! Bt s verioks & crucil point
Since ll substs of mul sets e ll (Lebesgue measure & i 1o be
complte) nd sine the Cantr st s cadimlty . & follows st M i
oty 2 e same.a» th of the ai o al subcts o [0 ) whercss
(i el s n e Gefining el ivolved) he curdinay of o
G of Borel s 1 “merely . This riscs e meresing Guesion of
Whether ll subets e meaurabe. Usng e o of choie, Vil in
1505 comstrucied & mon messurshe et (Endnote 4. ronically, n view of
Letesguc' foundationl opmions, Solovay in 1970 showed st e e of
this axiom is unavoidable here [26].

‘Amed wilh mecsure, a genealised ntion of legih,tree ways then
sugsest hemeeves o defne e el of 4 bounded fncion wien
Tolowing makesense





[image: image15.png](LD Mimic the construcion sbove 1o define measursble
subsets of the plane and then define

L1 = mE) - meE

where £° s the et {(x.f(0)f (9> 0}, etc.
(U2) Mimi the dfinition of the Rieman integral
[ f = infar Sm(ED supif = supa T, mE). infif

(taken over all finite measurable partitions of [a, b))

(U3)  Patiion (P) the range f [a. b] with a < a1 <...< 4,

and define [, = limipi 50 Zam(f 1. 0. 0).
(This is a specialisation of (L12); see Figure 3)

It can be shown that when these definitions ‘work’, they work for
precisely the sume functions: by 1900 they were definitions waiting to
happen! Lebesgue's genivs was to plump for (LL3) and, which was not
inevitable, quickly 10 realise that it led 1o many applications and over-
arching theorems of elegance, simplicity and power which swept away
‘many of the difficulties that had begun o pile up with the Riemann integral.
Itis no accident that W. H. Young, who chose (L2}, did not succeed in
proving any of Lebesgue's thearems. (A development using (LL1) may be

FIGURE 3: The Lebesgue itegral of a fonctin cn [, b):the shoded area sepresents
ageneri term ofthesun in (LL3), asing from prtiicning the nge.





[image: image16.png]found in [27]) Implicit in (LL3) is the assumption that f is measurable, that
871 (1)is 2 messursble s for al intervls . and it was the islation of this
propenty (which obviowsly generalises the definition of 4 continuous
function) that was the key 10 Lebesguc's success. Lebesgue immediately
proved that if £, () — f(x) with f, measurable, then f is also measurable:
we cannot leave the playground of measurable funciions by the usual
processes of amlysis. Lebesgue readly showed that every Riemam
megrable functon is Lebesgue integrable and wis able compleely 1o
characterise the former s those which are continuous .. the cleamness of
his characterisaton in the light of the carler confsions especially
impressed Vil and Young. Moreaver, null et e precisely hose that re
negligible for integrtion: f wo Lebesgue imegrable funcrions sgree except
on 3 nul se, they have the sume integral. Thus Diichlr’s function wis
admited 10 the fold, it being ac. zer0. And Lebesgue easly extended his
definitions o make sense of Jof, the integral of a possily unbounded
function over an wbitrary mesarible subset of B the defning sums in
(LL3) are then infnite xd need 10 be absolutely convergent for matiens 1
nun moorbly ~ zn inevitable consequence s that if / is Lebesgue integrable,
thensois || with|if| < f|f]

The Lebesgue integral has all the “obvious” properties that an integrsl
should have and, = Lebesgue showed, granted these properties, i
definiton i forced. Where it scores heavly over the Riemann integral i in
e power and scope of i comvergence theorems. To the Bounded
Comvergence Theorem (BCT) of histhess:

(BCT) Let £, 2L, b] — & be integrable, wniformly bounded
functions, ie. |f,(0|<8 for all x and all n, and let
F20) = f(c). Then £ s itegrable and

.

he later added
(Dominated Convergence Theorem) Let f, be integrable and
dominated by integrable 8, ic. |f,(c)| < g5 for ll x and sll n,
with £,,() = f(x). Then f is integrable and [ = lim [f,.

and Levi,in 1906, adjoined:
(Monotone Convergence Thearem) Let £, be integrable with
(7.(0) increasing for cach x and [f, < B for all n.Then
£ = limf, i inegrableand I = lim 1f,,

ol with the obvious modification for series of functons.

When compared 1o the extrancous side conditions and_contortons.
required to justif interchange of limits in sitiations involving he Riemann
integral [23] (Endnote $), these came 3 4 breath of fresh air and, in many
ways, scored a ‘neble twemy" of matural hyporheses, naural proofs and case
of applicaions. We illustrate this by presenting Lebesguc's proof of the
BCT from[9,p. 1251,





[image: image17.png]Lete > 0and deine E. = Ui, [~ £] > c} o that £, <
Since £,(6) — £(0, we hve O, = & and hence m(E,) < ¢ for il
> N For such n since |1, ~f | <28 on £ set of measure less than ¢,
and |f, — f| < ¢ ouside £, a set of measure no more than b — a, we
have:

Fr= 1] < fbr =11+ [ 1=l < 28 s e -,

which suffices.
In his thesis, Lebesgue obiined vestigial resulss on the reciprocity

between differentiation and inegration in his theory: these were improved in
an analysis requiring great technical virtosity i (8], lihoush some of the
delicte proofs were glossed over and supplemented by the work of others
such s Levi and Viali [23]. That the theory is subile s llusrated by
Lebesgue's singular function (Figure 4). This i the function f defined on
the Cantor set above and extended 1o be constant o ihe removed
subintervals between points of the Cantor set which gives it the singular
property that f* = 0 ae. yet 0= Jyf" = 1 =£(1)~f(0). The final siate of
afairs was the Fundamental Theorem of Calkulus inthe form:

(FTC.1) Iff:[a.b] — B is integrable and F(x) = [of, then

Dot only is F continuous (indeed, absolutely continuous), but,

ae., F (1) exits and equals (o).

(An absoluely conimous function s one — necessarlly of

bownded variation (see below) — for which the single

|x—xo| < inerval in the ¢ -8 definition of continuity is

replaced by any fnite collection of itervals o total length less

than )

(FTC2) I F is sbsolutely continuous, then F* exists s, is

integrable, and [, = F(b) - F(a).
(ETC.1) is 25 much s 2 one could hope for; @ petty spplication is 0 take
for f the characieristic function of @ measurable set £ and deduce that

FasdFa=0) mEow-dx+d) |
E) »

2e. on £ —this is Lebesgue's density thearem, which may be paraphrised
= ‘messurable sets camnot be 100 bad since they smear evenly over all
imtervalst. However, while (FTC.2) is substanially cleaner than any of the
partal reults hat had been obiained for the Riemann inegral, it leaves the
hagging question, ‘Surely it should be possible to recomstruct any
everywhere differentiable function from i derivative?’. The Lebesgue
inegral camnot. do this (for example, (¢ sin (1/%) is not integrable on
(0. 11), but recondite generalistions such s the Denjoy and Perron integrals
can, slthough arguably a some technical cost i csablishing some
properties (1)
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FIGURE 4 Lehesgue’ singulas function, o known a the Cantor function, which s
continuous, increasing . constant n each of the open itervals emoved i the
constructon of the Cantor set.

An offshoot of these investgations ws two memorable geometical
salps
1. Every monoonic function has a derivative ..
2 A rcifisble contimuous curve purumetrised by e lengih
(5. () has  tangent .. and e lengih given by

IR GRS

Lebesgue acually esablished the first result under the further
assumpion hat the function is continuous, but the mre general ststement i
also true [25, 28], He was, in fact, led 10 the fint from the second: cach
reinsiaies the  geometrical inuuitions of an carlier _generation of
‘mathematicians. Thus "proofs of the “fact” that a continuous function has a
derivative ‘in general’ appeared in intreductory callulus fexs @5 e 25
1870, nowithstanding that, by that date, Weiersirass had constructed a
continuous nowhere differentiable function 29, p. 258] ~ and intimated
(wrongly) that perhaps even a monotone such monster exisied!  Again, in
the last quarte of the nineteenh cemury, a fierce debate raged s to whether
the restrictions needed 1o validate the arc length fommula | T + (77 d
detracted from the definition of u recifiable curve s one for which here is
an upper bound 10 the lengths of all inscribed polygoms. Jordan had shown
the later to be equivalent 1o  having bounded variation, ie. of the form





[image: image19.png]# = & — hwith . h monotone incressng 3] 5 that Lebesgue’s hecrems
reconciled the opposing camps. Such dying-up appealed o Lebesgue,
110,p. 1941: s generlisaton made ot or the vain plessure of gencralising,
but Iy order 10 solve previously exising problems, i siways a ftl
senerstisaion.

“The definition of doube itegrals inthe comtext of Lebesgue ntegrtion
takes the form of the obvious modifcaton o (LL3) bur the evaluation
problem of whether 1 double negral i aqual 10,8 repested itegral such 85
1{17 (5, 1)y was more woublesome since the “slice funciians” such s
£ = £(x. ) nd not even be measursble fo all v, o cven forming the
repesid itegrs s an ssue. Inspired by a prottype heorem of Lebesgue
(qivalent 1o Fubits for bounded function), Fubni was ahl to secur the
imegrability of he slice function for slmost sl y and esisblish squaliy of
double nd repeated megrls —  real wiumph for the Lebesgue negral in
‘nother area where, other than for contimuous fnctions defined over “nice”
egions, Riemam iegraion had rn onto the rocks.

“The next spectacular applicutons o the new theory of itegrstion were
10 the theary of rigonometric sris. Lebesgue in [12] managed 1 validate
Fourers ution in the seme that if the series in (FS.D).
a0+ 5 (o, oo+ b sin ), comvrges 1 bownded limiing uncion
(9. then g and by are indecd given by formulze such @ (FS2),
b, = I7.f (9 sin meds. Conversely, fo an integrsble function, one can
form the partal ums S, — of the seres in (FS.1). Lebesgue gave a et
for poinwise convergence which subsumed the caler fests of Dini and
Jordan and sls0 an ingenious constrction of @ cominuous function whase
Fourier series diverges at 4 point which foreshadowed the gliding hump
method, later wed o prove the Urifom  Boundedness’ Theorem 1n
functional analysis (15, p 101). More refined summabily methods gave
et pointvise resuls for iegrabe £, he Cesiro means of 5.7 converge
e for square imegrubl £, he Abel meins converge . (Endnote 6. This
later result — due 10 Lebesgue’ influential protégé Futo — had a corolary

Parsevals equlity, bao + X(ak +17) ”.f*. This had become an elusive
holy gril for Riemann integrators: that the ntegral dominates the sum is
obvious from unpicking the incquality 0< |-~ S,/7. FE Riesz and
Fischershowed converely tha, for ny comvergent series by + 3(d2 + 5.
there i 4 square integrable functon reaisin it in Parseval’s equality. This
result is simply false for any conception of the integral marrower than
Lebesgue's it s then not foo fanciful 0 regard Parseval 1 a sort o ininite-

dimensional Pythagoras’ Theorem for the space L* of all such functions.
Linking tis insight with Fréchers 1906 thesis on abstract metric spaces,

Riesz realised that d 1. ¢ = |[]7 ~ gF]" gave a mewic for which L2 is
complte and that this space wis the idal srena for ilberts work on





[image: image20.png]imegral equations. Frigyes Riesz was ane of the pioncering giants of
twentieth century mathematics; we commend 1o the reader Lorchis
afectionate pen-portai in [31]. No one did more than he 10 ensure 2 place
for Lebesgue integration in the newly emerging field of functional analysis
[32], and in many ways his epochal 1910 paper on L7 spaces and their duals
murked the passage of Lebesgue's theory of integration from one niially
ninted by Hemnite ke suspicions of 100 ushealihy an imerest in
parhologically discontinuous functions, 1© 3 fully-fledged, indispensable
component of the mathematical mainstream.
Notes on the references

Although at the time what we now view s defects of the Riemamn
itegral were regarded more a challenges than inberent problems, it is the
completeness of the space L' of Lebesgue integrable functions which
epitomises the good convergence propertes of the Lebesgue. itegral
Constructing L' is thus a completion process somewhat analogous 1 that of
constructing 2 from Q: ane starts wih an “clementary integral" defined on
one's favourite dense subset D of L' and forms the completion by taking
suitably restricted pointwise limits of functions in 0. Candidates for D are
legion: step functions, simple funciions, contimuous functions, Riemann
imegrable functions, smooth functions of compact support, .. in all cases
‘what seems a small step, but tums out to be a giant leap, is consructing L',
(Endnote 7). Furthermre, since the measure of 4 et s the integral of it
characieristic function, one can either proceed @ Lebesgue did by first
consiructing Lebesgue measure then defining the integral (6, 11, 27, 39, 33,
34], or reverse the process by first constructing the integral  the so-called
Daniell route [28, 30, 35, 3 38

One can even start with the differentation of monotone funcions, for
‘which . Riesz has given a sand-alone proof via he picturesque ‘rising-sun”
lemma [25, 28]; an elegant reatment of differentiation properties in B is
given by Rudin in [3]. The permutations in spproach are endless — in their
teresting survey [39], Janssen and van der Sicen organise them o 3
“cirle lin" of starting points and destinations — but all generate the same.
mezsurable subsets of £ nd the sume inegrable functions. lronicaly the
imegral can also be defined by a tedking of the definition (RL2) of the
Riemann integral comresponding t0 the intitively appealing idea of allowing
himner rectangles 10 approximate the curve where the curve is sieeper than
whee it is flater —a pedagogic approach with some proponens [11, p. 154,
40,41, 48], Thus approximaiing sums of the form 3. (x)|1,| whenever
1, {5~ (). %, + 3(x)) for some function 3 :[a. b — (. =) give
rise o the Lebesgue integral: sipulating furthe that x, < /,gives ihe more
seneral Henstock Kurzwel (or gauge) imegral (3 constant gives the
Riemann integral). It can be shown that the Denjoy, Perron and Henstock-
Kurzweil generalised integrals are all equivalent, generuting 2 clas. of
mesurable funciions with the property that 2 measursble funcion is
Lebesgue integrable f and only if both / 20d | | are generalised integrable,
11,45)





[image: image21.png]In his Preface 10 [8], Lebesgue opined, I dre 10 say that the defnition
of the Lebesgue integral i in ¢ erain sense simpler han Riemann’s, and 2
casy 1o grasp s his; only habits of thousht acquired earler can make it seem
more complicated. Notwithstanding this, even today texts such 1 35, 38]
simed at introducing Lebesgue integraton 10 undergraduates tend 1o have &
missionary zeal about them — & Mikusiiski puss &, ‘The theory of the
Lebesgue integral is still considered s 2 difficult theory whether it is bised
o the concept of measure or inroduced by other methods. The primary
aim of thi book i o give an gpproach which (i) s itelligble and lucid &
possible ... It scems that our approach i simple enough 2 to climinate the
less useful Riemann integration theory from regular mathematics courses.”
And there are sl some who are dimissive of the effor involved, most
famously R. W. Hamming [42], If the prediction that an airplane can stay
up depends on he difference between Riemann and Lebesgue integration, |
don'twant o fly init”

Graduse texs e, however, wanimous the coherence and
completencss of Lebesgue's conception of the integral make it the paradigm
for all moder theories of itegration — Lich and Loss in [43] rhapsodise
Lebesgues achievement thus, “(The theory of integration) is one o the great
wiumphs of twentieth cenury mathematics and it is the culmination of 4
long struggle to find the right perspective from which 1o view integration
heary.”

For dlaity, we have opted 10 give a thematic rather than 4 srictly
chronological account of lements in the history of integration theary: in an
anticle of this length, it is impossible 10 do justce fo the full story which is
played out against 2 backdrop of changing atiudes to rigour, foundational
isues and the emergence of set theory nd pointset topology. We
apologise for any anachronisms and urge he. interesied reader towards
Hawkins whose painsiakingly horough and very readable book [23,
summarised in 22 hs been invaluable 1o us. It is 2 saga riddled with
surprises: for example, how many people would nowadys guess that the
original proofs of he Riesz Fischer theorem used Lebesgue's diffrentiation
theorems? Finally, it is a plessure 1o be sble 1o record that both Hawkins'
history [23] and the final editon of Lebesgue's Legons [9] are currely sill
nprint under the auspices of AMS/Chelsea publications

Endnotes
L H. L Lebesgue s not related 10 his mamesake and compatior V. A.
Lebcsgue (1791-1875) who was based in Bordeaus and warked mainly
i mumber theory and algebra. Atlest one dlustious source [45, . 423]
conflaes them!
The oscillaion of £ w 4 point 1 i the limit @ & > 0 of
wp{f (0 = f ()16 ¥ € (o = .50 + D)
Adense setis one the complement of whase closure is empty; a nowhere.
donse set i one the complement of whose closure s dense. An example





[image: image22.png]of the analogy that exists between notions of smallness in measure and
topology is that [0,1] is @ countable union neither of mll sets nor of
nowhere dense sets

Cantor's st has Lebesgue measure zero. The second Cantor-like set
described s medsure # and is nowhere dense since the length of the
largest remaining imerval at each stage tends to zero

“The definition of outer Uordan) content mirrors that of ovier measure,
but (erucially) only involves a finite family of covering ntervals.

The set consistng of  slection of ane element from cach additive coset
of Qin £ is non-measurabe [13, para. 16]

Some condition other than pointwise convergence s needed to ensure
[limf, = lim [f, - consider, for example, f,(x) = ng(no) for any
“bump function’ ¢ on [0, 1]

For a sequence (a.) the Césaro means converge if lim (a, + ...+a)/n
is; he Al means converge i m (0, + st +

The story for ondinary pointwise convergence of Fourier seris s an
imeresting twist: Kolmogorov in 1926 exhibied an inegrable function
with an everywhere diversent Fourier serics; Carleson in 1966 proved
hatthe Fourierseiesof a quare-tegrable Funcion converges .e.
‘Sometimes, this density may be used 1o good ffect. Thus the Riemann-
Lebesgue Lemma (dat, in (FS2), 0, b, both tend 10 zer0) follows
because:

| s snncac| = | [ o - s sinm + g0 simmear|

< I =gl + | [o0o smnca

where ¢ may be taken 10 belong to any dense subse (such a5 the sep
functions or smooth functions of compact suppor) for which
Ig(0 sinncdc — 0may easily be established.
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