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MARTY ROSS

“Now a8 1o what pertins 10 these Surd numbers (which, as it were
by way of reproach and calumny, having no merit of their own are
also styled Irrational, Iegular, and Inexplicable) they are by many.
denied 10 be numbers properly speakineg ..."

IssacBarrow (1734)

We begin with the most infamously irrational number:

This number aises aturally,of course, s the hypotenuse of a right riangle
with lgs of length 1. Notoriously, 2 wes found 1o be ratonal by the
Pythagoreans i around 500 BC. Their mathematics and philosophy wes
based upon natursl mumbers and small mumber atos, and s s
discovery would have been very roublig: the Pythagoreans wouldrt b the
only onesto et adly o he impuition o the iratonal

At some level, al demonstrations of the matonality of 3 invlve
proof by contradicion. Suppose that V2 s rtional,that thet we can wite

Eo T e w
We then show, by some genersl mhod,that
son

where s new fraction s somehow simpler. (For instance m, is less than m,
e, i les than n, o boh). Repeating the procedure,
mten e
and 50 on, exch time obrairing & simpler etonal expression for V. But
eary, this con' g0 on forever: evennully. the mumerator or denominator
will be 1, or well have ended in some similr sbeurdiy.  And thats the
contradiction. The assumption that we can write (1), together with our
genersl method for simplifying the froction, ineviably leads 10 o
Contradicton, 1o an squation that we kpow & flse, T only possible
conclusion is that (1) is impossible,that ¥2 i in factirational.

Thats the format o the proot, but we sl have 1o give & method for
simpiying the fractons, and 1t i here that the various proofs difer





[image: image2.png]Commanly (and probably what the Pythagoreans did"), one looks at the
fctors of a1t i ot hard 1o show from (1) that n a1 are both
even, and thus a facor of two can can be cancelled 10 give 4 smpler
fracton. (OF course his i done, without conrdicton, al the time: £ =
for instance. But } camot be simplified further. The conmradictory
implicaion of (1) i that we can abeays simplify frthr). We give here a
Somewhat s familar proot i 5 i a semse more elementay in that it
docan' rly upon investigating the factors of 1 or 1.
o begin, notie thet
n<m<m @
(Both inequlies folow immedistely from the fuctthat = 27) Now
-
i)

by ()

Butby ), 2m<om
Sm-mem

=Smo<m
‘Thus the mumerator (and similarly, the denominator) of our new fraction
s smaller, and we have our contradiction.
Before investigating other inrationals, it is worh pondering for o
‘moment on a fundamenal issue we have ths far ignored:
Question
What exacily i an irrational number?

(Noice that ¥ is geomeically intiive, but mumerically we have anly
concluded what VZ nt, ot whit it i)

sciing conree mtbeaieal rouls v i Pythgorens & oy Sffeal wd ©
Pythagors Hinsef lmos mpossvk. Howerer, & & geceally sceped at
Pythagorcns knew of e ¥rsionality of V2 ad dere 5 sproemen fus b
Fythagocuns e any sortof g, & would ive b bsed upon e chsificason of
uabers i even and 0dd (of wich ey were cruinly aware). B L Van der Waerden
1) rgues s e ythagorcans pobably a1 prodoce sch o armens: Walr Burke.
2 436] 5 mon sepical





[image: image3.png]A standand response to the above question is
Correct but unhelpful answer
An irvational mumber is an infinite non-repeating deciml.

I dossnt ke much thowght o relise that his answer, however correct,
s ot vy Mluminatin. How does one multiply ordivide infinite decimals?
How do you even ell what 3 mumber’s decimsl expansion is? (No one
kanows the complete decimal expansion of V2, for imstance). This & a
seninely deep question, only suisfactorly answered in the 19% cemury.
(By way of comparison, the complex mumber =~ V-1 i often consdered
o have an sir o unreality sbout it but VT s in act much casir to define
han y3, and was well undersoed by about 1800)

The Pythagoreans were right 10 be roubled. We won't pursue this
matier (aier we touch on & more natural medhod of expressing mational
mumbers). Here, we just noe that our argument above, & wel 3 the ones
below, can be made without explicit reference to imatonal mumbers. For
example,

Alternative statement that VEis irrational
There is no rational number = such that (:

Phrasing the imationality of v in this mamer, one can go on 10 prove the
swstement by rephrsing the caleulaion sbove: one. smply replaces cach
occurence of V8 by %, using he hypothesis 2 = (%)t the criical stage of
the argument.

Having ended our theoretcal intelude, we continue the hum for
imational numbers. Easy targets are other “lgebric’ imationals: 3,
VE + VB, Vi, Vi etc. Of course not all such numbers are imuional: ¥3 for
instance. Usuall, though, if such a mumber looks imational, it i And, it
can usualy be proved 1o be imatonal by a variation of 3 Y2-proof combined
ity simple_algebric manipultions.  Nonetheless, intuiion has. i
limitarions. For example, we have
Question

a. birrational = a® rrational?

It s casy 10 imagine that an imational number raised 10 an imational
‘umber must always be irational, but in fact
Answer
No.
“This result has the following simple and intriguing proof. Consider the

aleiion
-
(&) =™ - -2

Now, cither ¥2** is rational or it i imational. In the former case we're
dearly dane (a = b = V2). And. in the laier case were done by the





	[image: image4.png]above calculation (a = V3% b = ¥3). So, we have an cxample, but we
st don'tknow what it st

In fact, ¥2¥ is immational, R. Kuzmin proving this in 1930. The
recentess of the proof idicetes how diffcult it can be o prove the
iatonality of even an iy defined mumber: ance we go beyond th roors
(@d their generalisation, roots o polynomial _equationy)  proving
imatonality i simost slways tough. (Alematively, it lhustrstes how exsly
one can hide diffcul definitions in simple notation: what exactly docs 1t
mean 10 maise & mmber 10 an rutonal power?) Latr, we give furher
{lutrtion by giving 4 selection of mumbers for which e queston of
maronality i stll nanswered

We now leave the algebraic world, but well delay discussion of
Everybodys Favourte Number  whil longer. First, we consder another
wellmown felow:

nander 1o discuss the imstionality of e, we need a charsctersation of i
Honever, ke the siwtion wih V. there is no single obviows choice
The original definition,dating 10 around 1600, is

emmfielf ®

‘This expression arises narurally in finance with the notion of continuously.
compounded interest. Aliernaively, in the siudy of the calculus, one tends
fist 10 introduce the function £ (1) = ¢ and then ¢ = ¢! = f (I). But of
course this approach just shifts the question: what special property
determines the base ¢? In fact, for any bise g, there is 4 constant M such
that

a .
() - ma
We can the dfine ¢ tobe that (mique) bise for which M = 1. That i, e
s defned by the idemity
4
ZE=¢ @

Of course, it doesn't mater whether we start with (3) or (), 1 either
can'be proved from the other.
‘The expression for e we actually wantis the infinite series

i

applics the Binamial Formula o the expression (1 + 4" (taking th limit s
1= = needs some though, but 3 all fems in the expansion are positive







[image: image5.png]and increase as 7 increases, his i not 100 hard); in the later case, one wses.
Taylor's Theorem 10 expand /(1) = ¢ wound ¥ = 0 o approximae
£(1) = ¢, and then one shows that the remainder tends 1o zero s higher
degree polynomils are used in the spproximation.

From (5) we can prove
‘Theorem (Euler, 1737)

eis imationl.
Proof

s for VB, the proof i by convsdicion. Suppesing that ¢ s rtone,
wehave

m ninsegers. ©

By ).
MCESTRRTEET]
AT T G e
Now each erm on the lef hand side s an intger. On the ther hand,
' 1 '
e _1___
@D G D@y e DD
' ' '
@ e
This lst expression s @ seometricseris, which sums to
L
R
So. though the left hand side of (7) is suppasedly n integer,the right hand
side i defintely pasitiv butles than ane. We have our contradition.

0<RHS ..

Though (5) dates 10 1665 and lsaac Newton, the above proof was first
siven by Joseph Fourer in 1815. By contrast, Leonhard Euler's original
proof s based on his contined raction expansion,

e-1

10+
Iy
(The way 1o read thisis, &, = 1,0 = has = ;= d,and soon. Then

L= lima,). In fuct, every mumber has a simple continued fracion
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integers). For example,

L

20 L
24
b

(The expansion for VE is casy 1o prove, but hat for e takes more work).
Clewly, 3 finite continved fraction (.e. one where eventually all the
‘mumerators are zero) is rational. Conversely, Euler proved that any infnite
simple continued fraction is irrational. In particular <5 is imational, and
s e s a5 well.

We close our discussion of ¢ by norin that any integer power e”is also
imational; this i in sark comparion 1o 2, which of course ssfies the
equation (VA = 2. The imationality of ¢ is more diffcul 1o prove:
Johann Lamber used continued frsctions to prove this in 1766, bu Fourier's
method doesn't apply. (Later well indicute 3 thind approach) ~ As 4
consequence,log 2 (for exampl) s imtiona, since

log2 ”’-" P
Thus, since sy
we have another example of an imational mumber o an imational power

being rational,
Now we have the sar of our show:

Of course s mturally defned s the rtio ofthe circumference of a
cirde 1o it dameter.  However, unlike the case of Y2, this seomerric
defniion docs not immediately wansform into. mmercal formition
People have bocn chasing formulas and sstimates for o for housands of
years, with varying degres of success. The following table indicates  very
partiat history of mumerial pproximations o .

Approximation for 7 Who/Where
3 Mesopotamia
(87 Eeyp

3 China

3 Old Testament
between 388 and 34 Archimedes
314159 LiuHui
314159265358970 Al-Kashi
10100 decima placss Machin





[image: image7.png]1853 10500 decimal places Shanks.
1897 4 Indiana
1058 10 10000 decimal places Genys
1995 t0six billion decimal places Kanada

The 1897 episode wins the prize for -siliness. An cccentric named
Edward Goodwin persuaded the Indiana House of Represemtatives o pass &
bill legislating the value of o (he bill s so bizarrely writien it contains.
‘seomeric claims implying six different values of v). Unfornuately for fans.
of the sbeurd, a visiting mathematician enlightened the Indiana Senate
before they had a chance to vote the bill nto law.

More generally, there is an element of confusion in the table above: we
have not indicated whether those who used an approximation t© 7 knew it
was an approximation. Certaily, Archimedes knew this, but the situation
with some of the early historical values is unclear. In any case, for the
context of irrational mumbers, we'll leave o room for doubt.

Question
Suppose we know the first eight ilon diges of 7. What can tht el us
aboutwhether x is rational or not?

Answer
Absolutely nothing.

Fascination with 7 has given rise to many beautiful formulis.
Archimedes' approach, perhaps the most intuitive, was 1o approximate the
it circle by regular polygons; he perimeter of such a polygon then gives.
an_approximation 1o 21. He wed boh inscribed and circumscribed
‘polygons, thus obiaining both lower and pper estimates for 1. His method
wis 10 double the number of sides repeatedly, (essentially) using half-angle
formulas for sine and tangent 1 express the fiew perimeters in terms of the
old. Starting with 2 hexagon, he worked up to (atleast) 4 96-sided poly gon,
but his method can theoretically be applied 1o give any desired accuracy.
Taking the limit, the inscribed polygons give the expression

ne (D)

Regular polygons and half-angle formulas were also wsed by Frangois
Vitte. In 1579 he calculated the arca of these polygons, using a clever
algebraic trick to obiain the infinie product

2 A a w
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the area of the unit crcle being.

a4
An expicit lmit cun now be obained by spproximaing e integrl (o
example by applying the binomial theorem 1o expand the integrand Y1 — +*
nd then incgrting e by erm). 1 1656 Newion wd s s wih &
Sighty different itegrl 1 obai 4 sresbegiming
33 1 1 1 1
Teuladmomrar
Closly rlued s e idea of exprsing 7 in s of imerse
igonometic function.  The st of many such ol due 10, an

unknown Indian mathematician from the 15th cenmury, is the fimous serics.
expression for arctan 1

h 3

Two more identiies, 00 beautiful 10 overlook, are the infinite product
by John Wallis (1655),

224466
133557
and the infinite series by Euler (1734),
s S S N
TTETETYTE
Both are derived from clever analysis of thesine function.

“The sbove are all beauriful identiies, but it is not clear that any of them
help us determine whether 7 s imational. (Certainly, the limit nature of
these identities is not enovgh in self 1o conclude anything) We might
hope to mimic our proof of the irrationliy of ¢, but it i tough o come up.
with a sufficiently neat sercs for 7 (even e seems to be beyond the reach of
such methods). An astonishing series which is tempiing but doesnt quite
workis

2

..

A
This decp result rom the theary o dheta unctions, s due 10 the amazing
Srinivasa Ramanujan (1914).

Another maursl spproach is 10 hunt for @ simple contimed fracion
expansion for . However, though one can compue the tems of the
fraction ane by ane (just 1 one can compute the decimal expansion of V3,
ihe complete imple contnued frction for i sl unknown. There are
many non simple fractions for 7. begiming with a corolury of Wallss
infinie produc,the lovely ientiy of William Brounckers (1639
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However, such expressions are not necessarly irrational
In fact the original proof that 1 is irrational, due 1o Lambert, i in terms
of continued fractions, but in a briliantly inverted manner. In 1766 he
derived the finctional continued fraction
P
J
(F B (‘)—li

wany =

Lambert then proved that if the angle v is rational then the continued
fraction must be imational. But tan§ = 1 is rational, and thus ¥ (and s 7
s well) must be irrational

In principle, Lamberrs is a fine proof, but it takes considerable work 1o
justiy all the seps”. S well give 2 second proof, a beautiful argument due.
Tolvan Niven.

P .

where Pl = (1 - 0
and where the ineger N will be chosen (lrge) hter. Noting p(o) = Oat the
endpoins, an itegration by parts gives

Lo
[,/ 0 s wedi.

NN - - N (-
whichis sl zero a the endpoins. o, integrating by parts again,
L

1= ;Jﬂp"(\’)snnrdr

We keep integrating, at cach stage using the product rule 1o differentiate
(0. After a few differeniations this will be quite a mess, but a lot of the
tems wil stll be zero at the endpoins: in order for 4 ferm 1o give 4 non-

Tssgning ceds for O Becrems can b commions, s Tt s (d T
mathemaicans) have dffeing Sandseds f rigou and proot. 2 wel s iffring syles of
exposion. So.some credi Laiber it proving e ¥ronaiy f e ecause e xplicdy
consderd e convergence of e contined facionfor S cfers argue it Evker could
v done s wikou Fouble i e hd & ecesay. Sy Adin- Mare Legndre
5 ofen wsigned some cedi for provig e Frsionaliy of 1. e clam beig fut s
sstemts vesmen of coined fucions (1794) & rore goroes han Laberls aalysis
of e frcion sbore: oders claim hat Laiber' argin. ough kss lgan. s n fct
more rgorous an Logendre. Clasde Bresias (s (] dcusies hese el ssves
2 o et





[image: image10.png]zro contibution at an_endpoin, cither ¥ or (1 - " has 10 be
differentiated at least N times, which implies there i  factor of NY in that
term.On the other hand, deg p = 2V, s0 p will be differentisied out
completely afier 2V integrations. Combining these two observations, we
must have

(2% [t}
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“There's no contradiction in tha, but now suppase s rational,

K Ky integers.

Muliplying boh sides by /1,
v
N '

And now we have a convadiction. For0 < / < 1 (since each temn in

he imegral i between 0 and 1) And,if N is chosen arge enovgh,
o<l

Thus the left side of (8) is between 0 and 1, whereas the right side is
supposedly an integer

“The sbove s a vrision of an argument by Chrles Hermite, and other
mumbers can be proved imational by similar means. In paricula, ineger
powers ¢ of e can hus be proved imtional. As for ,taking 3 lile more
care, the proof sbove sctually shows 1 i rational; urher, with @ similar
argument ane can show that 7 i not the soluton of any quadratc equation
‘wih rtional cefficents. (The lair i a sronger satement: for example,
(1+¥2F is imuional b 1+vZ i a oo of e equation
£ 2¢— 1 = 0. Here, when sking whether numbersare the solutons of
polynomial cquations, we are edging into the much more difficult queston
of the transcendental mture of mumbers). However, tough higher powers
of mare indeed irutonal, his s significanly more diffcul 10 prove.

K an integer. ®

We dlase by introducing 4 few mumbers which are presumed 1o be
irational bu for which this has yet o be proved.

There are zillions of ways o combine mumbers artificially, and
essenially allthe outcomes of all of hese combinations are ot known 1o be
imational. For example, the character of

ate m
i unknown. One might be tempied 1o throw e in wih his lot, but in 1929
Alexandr Gel fond showed this number to be irational (¢* = (~1)", which
s matural enough in the warld of complex numbers). Also, though ¥ + ¢
and e are ot known to be irrational, it is casy 1o show at least one of them
must be irational. To see this, consider the quadratic equation

£— (x4 oxs e =0,





[image: image11.png]Whos sltions are v and . Now we know that i e soltion o ny
o aquation wilh raionss oeficents, s o of 7+ ¢ of % ¢
inatondt
Noes imeresting are values of the Riemann ztafunction,
Co- B legese o s-2a4
We hve s special cas f i sbove, Elers reslhat

o=

Aswell, Eulershowed  £(4) =

and in geneal £ew = o omtiond
(The a, can be written in terms of the so-called Bernoulli munbers). As a
consequence, all the  (2n) are known to be irational.

“The values £ (21 + 1) are much more mysterious. For a lang time, no
ane b an ides how 0 aproach hese manbers. 1t was 2 complee shock
when,in 1978, unknown mathematiian ramed Roger Apéey proved hat
23 s iatiral. The graionaiy of £ (9 and the values beyond ae sl
nproved.

"o explain our las example, fist pot that ane cannor defne £ (1)
except1c b e since the Harmopic Sevies,

L1
et
doss not converge. Howevs,if we subrac log k n the corres way, we do
g5 e quaniy 7, known 2 Eule’s consan
L1 L
e (e bete ot

As wilt sl the mumbers we have considered, it makes absolutely o
pracical difference whether i riona o not. But mathematicars want 1o
Koow, smpy forthe sk of knowing. Euler’s consan i e grnd prizefor
cument huntes of the iatonal.
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