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systems of circles and spheres
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Inroduction

Figures 14 set the scene, with configurations of tngent circls that
may perhaps be new. The labels are curvatures:the curvarure or hend being
he reciprocal of the radius. By convention, 4 cirle that surounds anorher
has negarive bend and radius. Inthe first pat of this paper  give some casy
fommulze for configurations ke these (see Note ). 1 show how we can
develop fracal siructures—I call them frrls—having an infiniy of tangent
cirdes in cach “wiangolar” regio; and give methods for fnding megral
roths. The second pan extends these ideas 1 ystems of tngent spheres,
‘which may also be integral. Throughour, an integral object is one whose
bend is an integer, circles and spheres are generally referred 1o by their
bends, ind examples are marked with bullets ().

PantI: Cirles
These formalze come frominverting Steiner chains in two dimensions.
Iversion s a_geomenical wansfomation with @ cenre O and

constant k, which i the adiusof nversion (b). The inverse of  point P is

the point  on the ray OP such that [0P].|0P] = . If we add an idesl
point 1 at infnity’, and define 0 and 10 be an inverse par, hen every
point has & unique inverse. If O s the origin snd P i (% ) then P &

(x. g, where ¢ = /(& + 2). 1 P moves on & curve L, then the

invers curve L' i the locus of 7.

We need afew busc propertes.

Astraightline through O s sel-inverse.

A line distant d from O invens o 3 cicle passing through O with
rudivs £/2d; conversely, # circle through O with radis 7 inverts into a
line st £/ 2r from O,

Acirde of i whose cenre s distant d from O invers nto  circle
wih rdivs k7 whose cenve is distmt xd from O, where
X = K/(d ~ ). The contes of imene cirles are not an inverse
par

Angles of inersction are preserved. In particulr, ngent circles invert
o tangent circes, and, i they touch at the cente of inversion, they
invert ino paallel lins, which we regard s “crcls’ that “ouch’ one
mother at infinity.
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A chain of cirle is made up o circular ks, cach of which touches it
two neighbouring links and two oundary circlés that may, or may not,
intersect each other

+ In Figwre 1 there is 2 chain ... 11, 6,3, 2,3, 6, 11, ... with
boundaries 2 and —1, which touch cach other intemally. The
complete chain hus an infinity of links. The infinite chain
15,3, -1, 3, 15, ... hos boundaries 2 and 2, which touch
externally

A Steiner chain has boundary circles that do not meet, and the number

of links is finite—the lust link touching the first (c). A Steiner chain of
integral order N has  links and will be eferred to 2s N-chain.

+ Figure | conains he 3.chain [2,2, 3; 15, -1 Is links have
bends 2, 2 and 3, with boundaries 15 and 1. The chain [1, 2,
2;3, 3] has boundaries 3 and 3 tha lie outside cach other
Figures 2 and 3 contain 4-chains, all of which can be interpreted





[image: image4.png]in three different ways: thus Figure 2 has a chain that can be
writen as [4, 5, 6, 5; 12, 2], or [2. 5, 12,5 6,4], or [-2,4,
12,65, 51,
Figure 4 contains the 6-chain (3,6, 15,21, 18,9 10, 2],
Since a stright line is 4 cirde with zero bend we can have
chains like [a. b, 5. £, cl in Figure 5. (i is an interesting
exercise tofind the bends s, and u given that a, band care 1,2
and 0)

Alihough the infinite chains in Figure 1 are not, strilly spesking,
Steiner chains, every chain whose boundaries e two angent circles is
limiting case of an N-chain a5 N — . We can therefore treat them 15
Steiner chains of ininite order.

If we visit cach link in wm in these chains, we travel once round the
smaller boundary. There are also Stciner chains whose order N is ratonl,
N'= n/m.nand m being coprime. These chains have n links which take us
m times round the (maller) boundary. Figwe 6 shows @ chain
0. b.a, b, 0; c.c] (in which the siep 0,0 is considered 1o form half @
circuit of the boundaries). If we visit the links in order and retum 1o the
sart, e upper 0, lower b. a, upper b, lower 0, upper 0, noting the points of
contact with cither boundary, we travel twice round that boundary, thus
n=2and the chain has order 372

In the rest of the work I use only Stciner chains and =-chains, refering
o them simply a chains. Also, i the curvatures of the boundaries are not

needed, | made denote 2 chain by listing only i links, for example the chain
in Figure 4 would be given as [3, 6,15, 21, 18, 9]

FiouRe §

Standard forms

Our formulee come from two standard forms.  Although all the
formulze can be obained from the fist of these, some are derived more
casily from the second form. We also need both forms when we consider
chains of spheres.

“The first standard form (Figure 7) has concentric boundaries and equal
links. We start with a general inversion of this chain. [t can be shown hat,
by moving the centre of inversion, we can obiain any chain of the sume.





[image: image5.png]ande. Suppose e commn radis of e links s p, and the onder is N,
equal 10 n/m, so each link subiends an angle & = 360°/N at A. Take ¢ = 46
and let O be the centre of inversian, where [40] = gp. Let k = vZ. Then
irde C, becomes  circe with bend ¢, = K + L cos (16 + a), where
K= (7 cocg) L = ~gpcosecs, md = ¢ 26

Since cos[(r+ )0+ o] + e [(r— 10 +a] = 2cos(r0+ s, it
follow  hat ¢y ~ 26,8+ 6.0, = pla+ ol g)(1 - awmd).
independent of and a. Therforefo any chain

= a- (e 20— o),

with corresponding formulae for cs, ce, ... I we know ¢, ¢ and ¢, we.
can find all the c.

Fioure 7

o find the second standard form we take k = vZ and O at the point of
contac of C, and C;. These become paralel lines 2r apart, where 7 = 1/p
(Figure ). The new boundaries touch both lines, o they are circles of
rdius 7. Circle C, he inverse of Cy, has radius ', where 1= bsec. We.
can take the equations of C,"and C/ 2 y = —rand y = r the cente of C./
250, (1 — )r). and the cemes of B,” and B s (2ur, 0)and (-2ur. 0).
Note tha (0,0) is notthe cenre of inversion, which s (r tan . 0)

Most of the resulss come from inverting this standard form with
inversion centre Ot (/. —g)and £ = V2 With our sign convention, the
inverses of C,"and € have bends ¢, = 7 — gand 3 = 7 +g. We o
fnd

B+ @40 r - in
2 N

‘which simplifies to
2-cc+vd

=100t R naa tag - vd
a+a = b
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where v = 1+ 2 cosd = 1/4¢ ~ 1. Inverting the boundaries we find
wl o+
re
it a simila resul or b,
These and allied relatons re gathered in Tabl 1. We can, of course,
Replace ¢, G .. by any consecuive bends. Noie hat the points of

contact of the links are collinear in Figure 8; afier inversion they lie on @
circle with bend Ju.

by # (e = 220086 + ¢y + 24),

LN = im0 =
Put 7 =206, +1 o=u= U1+, let
F= g = wntl = Q- D/Q 40 = do - Lihen

oo+ vd
a+e

(La)

w5+ a0 + e - vd )

s v - e o

b (-t o2, @)

b= by = o, ab

bt by = 200 - e+ e @9
@+t el = b+ e+ ab 3a)
o= =be +oe + ob )

ifthe radii of the boundaries are 7, and 7 then, with he sign convention,
the distance between their cenires is d, where

& =+ 1)’ + 4 @]

TARLEL
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Tuble 2 gives ¥, o(= ) 1 and £(= ur'g = 4o - 1) for some
values of N. Each circe in 4 chain of order 3, 4, 6 or = will have a rational
bend if ¢, and ¢, are rational. Chain of the ther onlersin Table 2 exst
i allied pairs. For instance, for every chain of oer S with bends
a, + fAfS there is one of order 5/2 with bends a, — f,43.

>
V) M- s
H2-v) v 3o
LoD HEe D) 45— 2
2-45 N 745
L34+E) HWE+D) s+
1-v2  H2+43) il 34248
MooV hGev) H6E- D) 3528
1- V3 2+ 3 Vi 7+ 45
T
The formula fo chains of arders 3,4 ad 6 are s in Table 3. For
intogral bends we ake £, , and ¢33 ftege, saling the resuls(and )by
mmon fuctor, i necesary. Tt iing cae s N > o e
‘boundaries touch [ 14]. In this case
o= 0 - ae+ 3 + ).
a=e-3e -
Bty = 20+ ey 204

Z8REeut aswz

5%

4
Poce+d 2 +2d
a+a a+a a+e
(e a-(@-a) a-2a-a)
Hoa-c+ax2)
Ha+coxd)
Her+ e be + e
Ha +co

bub atetas Het+as2)

bi+b 2Aa+ta+a) a+oata

TABLE3





[image: image8.png]The second of these relatians holds for any four consecuiive links. Since the
third differences of the bends have the form G5 — 36,2 + 36,41 — G
they all vanish. The second differences, 4%, are therefore canstant, and
by = (87 £ 22)/4. Thus c, has the form (b, + bo)u® + au + 4.

2 - [2.2.-1; 33] (Figure 1.

- 3=7-[456.5 12.2] (Figure 2).

@ =2 > [2244 7.-1] Figure 3).
Lo =2 - [125763: 10/3,-2/3] (f

N=52. A=c =0 ©=3+y55[0.3+54+2¥53+50;
2+ 2952 + 2v5) (Figure 6).

There is an allied chain [0.3 ~ V5, 4 — 2v5, 3~ V5, 0; 2 - 5,
2 — 2¥5] of order 5.

We can use the formulze in Table 1 10 solve other problems

Relabel the circles —2, 3 and 6 from Figure 4 so that b, = 3
G =<2 ad ¢ =6 ten Ga) gives A= 4, s =25
= 36,5 = 28and ¢ = 9. We also find by = 253. Scaling
these with a factor 3 gives the chain [~6, 18, 75, 108, 84, 27: 9, 25]

If instead we take 6 s the boundary circle and 2, 3 a8 links we
obtin the chain [-6,9, 75, 126, 111,45; 18, 22]

These new chains are shown in Figure 9

Rational chains with common boundaries

If given boundaries contsn a rtionsl Stiner chain, they contain an
infniy of rtional chins. For, i a chain of order 4 or 6 (or mivialy, of
onder 3 hos three comsecutive rational links, sl the fiks. are. etonal
(Glthough e boundaries eed o be), and heir bends have e form
K + Loos(r6 + a), where K, L and a sre such s 10 make he expression
rtonal, and 6 = 360°/N. If we start with a rational 4<hain, ke any
raional & and find § such that sosf = (B — 1/(E + 1), then
K + Lcos(ré + a + f) is rational, and 5o is the new chain. The same
holds for chains of orders 3 or 6 if k i rtional and
anf = 02 3/ + 3

The generl formulee for these cains are cumbersome, but the
following method always works. Let us start withthe 6-chain of Figure 4
with boundaries 10 and ~2. We know, or can exsly find, that 4 = 9.
Suppose two adjscent inks e bends xind 3 then (3.) gives

O+ 5437 = 10+ ) 132 1= H12+ v+ yTIFT TR,

Clarly « i rational if, and anly if, 3y~ 72y + 180 = %, where p is
rtiond.  Figure 4 shows that there i a soluion’ y = 3, and
3(3) - 12(3) + 180 = —9. Subtracting, we find

36 )= 723 = 9 = 36— 2 = G+pG-p.
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Pu3(r-3) = kG + pand x(y - 20) = 3 - pritfollows that
6+ 2+ 1) 6+ 18- ) vep

> EE - P 3403 esor 2
If % = 0.1, 2 or 3, we get the original chain; puting x = 3/2 gives

¥ = 87/7andp = 111/7,50 x = 141/7 or 307, Eiher vae of < gives
e chain (14177, 877, 307, 277, 8177, 13877 10,2
Ina similar way the chain [4, 5,6, 5; 12, 2] of Figure 2 leads to
T
G e
With i = 2 we have [42, 56, 58, 44 12, 2] and x = 7 gives the chain
472,596,528, 404 12,-2) These are shown in Fgure 10.

»

Sums of powers of bends

In Figure 10 the links in each chain have bends of which the sum is 20,
the sum of squares is 102, and of cubes is $30. This s true in general: given
any chain of order n/m and any integer p such that (0. < p < ), the sum





[image: image10.png]ofthe pih powers of the bends o the liks depends oy on the bends o the
‘boundaries (d).

Define 6 and s before, with 1 = tan. Set B = (b, + by)/2F and
H = b B, e = B(1 + V& F ooy, ) whete 4 = 76+ .
We can now express ¢ in terms of cosines of multiples of . n summing
over r, these conines vanish, leaving only the consant e, Wrting the
sumas S, d puting G = F(1 + H), we find

3 v

If s composite, uy say, the links form  sets of u equally spaced
circles. Then, for any integer p such that 0 < p < u, the sum of the pih
powers of the bends of the links is the same for all hese sets, being S,/; we.
can simply write in place of 1 in the formula for S,
« For the 4-chins in Figure 10, we have = 1, b, = 12 and
by s B=5 H=-24/25 G=1/100 amd
54 conyp,. It follows that

oo Sl peanas

whence S, = 4.5, = 20,5, = 102and , = 5.

The 6 hiin of Figure 4 s £ = 1/3,, = 10and by = 2,50
B= 12.H = 5/ 12 G = 7/35. Thigives

(e, 2(e)] _
|2[6+‘(2)+“( |or-o

Thus S, = 6,5, = 72, S = 1116, S, = 1940, S, = 355020
and 5, = 6800112 fo iy 6-chin wih bounds 10and 3

Froths

So far  have dest with sngle chains. Figures 14 contin overlapping
chains. Suppose we have s chain [, ..+ b be) whose parameter
A If we can find amother chain [cn. cu cv. 2 6% b o). with
parameter . having ¢, c3 and by in common with the it he ther 7 — |
irdes will fit i the rgion bounded by 1. cx and by Similaly, « chain
€1 01,7 by o] with parameter 7 will give 7 — 1 tangens circles
iting berween ¢, c3 and . I the fist cuse we know from (30) that
o(-a-af=bei+cc:+cby, 0o 4 and & are the roots of
B2+ a) Thus.

X =2c+c)-A=ef & X+vd:r,+2u'7/\)

From formula (2b) we have by’ = by + 4o’ There are similar results for
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« The chain [4, 5, 6, 5; 12, -2] in Figure 2 has £
4.c= S we find £ = 1L o = 14, o/
20, giving [4, 5. 14, 13, 20, 2] also shown in Figure 2.

« The chain in the region @, 5, 12) has #° = ~25, giving [4, 5.
0, 69; 12, 62, We can verify that ¢§ ~ " = 56 = 8 and
bt~ b/ = 42 = 10h

“ Letc, = Sand ¢ = 6 we find the new chains [5, 6, 20, 21;

and 15, 6, 76, 75; 12, 70] which fit in the regions
bounded by the circes 5, 6 and the original boundarics

5ok N-6=o
Feit =
20+ ) i = e+ e
§ = cae 200 - ),
5= e -2 - ), a-g
by + da,
by — 4ok, b - by

TaBLES
We can apply his process 1o chains of any order, cach new chain
crating more wiangolar regions in which we can add yet more chuins,
bulding a fracal srocture, 4 orh, in which each riangular rgion contains
an ifiniy of tangen cirle. [n general the bends will be imaional, bt we
can easily construct froths in which every circle s an inegral bend. 1f 3
chain has order 3 or 4 and all the bends are integers, the same halds for cach
new chain. This is also true for chains of order 6 provided A and the bends
ofthe links are muliples of 3. The structure f 4 roth depends on is rder,
and there ar infinitely many integer foths of orders 3,4 o 6. (Technically
here are also roths of rder «, but they are identical 0 those of order 3.)

Special methos: froths of order 3
If four circles w, x, y and = touch cach other at distinct poins, we can
regand three of them 4 links in 2 3-chain, the fourth being one of the
If the links are x, y and 2, then w = x + y+ 2 + 2 and
32+ 2 + 1. Eliminating 2 gives

WadeRed o dmemewenenem  ©
B

“This, or s equivalent, was discoverad by Descartes [S], rdiscovered by
Beearoft [1] and again by Soddy [11], who name it ‘the kiss pecise’





[image: image12.png]If the second boundary has bend ', then w and " are the roots of (5)
regarded s a quadratic in w, and w + W = 2(c + 3+ 2). This follows.
equally well from b, + by = 2(c, + ¢z + €3), given in Table 3. If we let
£= W+ oty e+, hen the new cirde fouching (5 7,%) s 2 — .
Similarly 2 new circle touching (. 3,2) is 2¢ — 3r, and so on. 1f we sart
with integral circles, all the new ones re integral, and we may continue
indefinitely [7].

+ InFigure 1, the hain [-1, 2, 2 3, 3] conains  tangent st (1,

2.2.3) for 'which 1 = 6. "The new cirle touching (-1, 2) has
bend 12 — 9 = 3 (which we knew): that ouching (-1, 2, 3) has
bend 6, and thatin (2.2, 3) has bend 1. This gives et (1,2,
3,6) and (2,2,3, 15 which can take more integral cirles.
The centres of any three such mutually touching rational circles
are the vertices of 2 Heronian wiangle—its sides nd area are
rtional. We can herefore take rectangular axes such that evry
centre and point of contact in 4 rational 3-froth has ratonal
coondinates.

Froths of order 4
The d-chain [a,b, &, Bic,c) has a+a’ = b+l =+ (e
Gn b witen i the fom

1 it parameter  equals y. Circles such

25 0 20 d do not touch, and a vipe lke (o, b, ) comprise three angent

circles inscribed in 2 region bounded by the complementary wiple (2, b, ¢).

Clearly & = 2: - a. Expressing £ in terms of a.b and  gives
= al+ f + 7 Itfollows that

S(S bend = 18 X (bend?) and (X bend)’ = 12 X (bend?)
the sums being over all six circles ), mnd
—2@sbrosd B d =0
The other root, =, of this quadratc s 2(a + b + ) ~ = This ives  new
wiple (. B, ")—that is (2 a, 22 — b, 2 — c)—inscribed in the
other region bounded by (a, b, c). If a, b, ¢, (ar a, §, y)and = are integers,
so e d. B, ¢, . d", " nd ", Inhis case we can continue he process
indefnitely, generating an imegral froth.
Iy Figwe S wih o= L b= 2 md c = 0 we find that
SG+5-0 % :=5 o I The mom 5 gives
So2xS-129r=8miu=- 10
+ The wiple (9 8. 10) now sives 2 =209+ 8+ 10) 5 =49, and
we can ineribe a new riple (89, 50, 88) within it This gves
new = = 485, and a furher riple (851, 350, 582,
+ For the wiple (0,8, 9, the value § for = recovers (10,2, 1
20, giving 4 wple (5, 50,49) fing ino (0,5, 9).
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In any froth of ander , every region bounded by a pir of ngent circles
contains consecuive sets of n ~ 1 circles. For instance, the region between
the circles labelled 1 and 2in Figure 3 has the sets (10, 12, 15), (4,4, 7).
12,4,7), 412.15), ... The bends of comesponding circles in each set
form a quadratic sequence—iheir second differences are constant. We can
therefore casily extend the sequence with (10, 28, 31), (20, 52, 55, (34,
84,87), (52, 124, 127), and so on.

Part I Spheres

Clains of circles have two non-intersecting boundaries.  Chains of
spheres have three spherical boundaries which may or may not intersect ().
If any boundary intersects both the others, the ircles of intersection must
ot cut cach other. Again we use inversion to find some general properties.
In three dimensions spheres invert into spheres; and circles, which are the
curves of intersection of pairs of spheres, invert ito circles. A plane is of
course  sphere with zero curvature.

If we invert a chain of spheres with respect 10 the contact point of two
links, these links invert into 4 pair of parallel planes, and the boundaries
become three equal spheres lying between (and touching) them. The rest of
the links lie berween the planes, thei points of contact and centres being on
a line perpendicular 1o the planes. We can imagine the boundary spheres.
lying inside a torus, each touching it slong 4 circe, the forus being
sundwiched berween the paralel planes. Every link in the chain ouches the
torus slong a circle orthogonal o those defined by the boundary spheres.
Any other sphere inscribed in the torus wil touch all the links, and can serve
2 o boundary. Therefore, if we could inscribe a chain of spheres in the
torus, we would have two inerlocked chains, every link touching all those
inthe oiher chain. | shall show that this i always possibie

If we begin purting equal tangent spheres in the torus, then a plane
section through ther centres s like Figure 7. Let each sphere have radius
and let is cross-section subtend an angle 29 at the centre A, If g = 180°/y
s rational, the spheres are part of a chain of order g, and their centres are
distant - cosec from A. A section taken through the axis of the torus s ke
Figure 8. Ifthe original chain has order p,s0 ¢ = 180°/ p, then the centres.
of the boundary spheres we Jur, ie. rcg, fom the aus. Thus
Fsec = rcoseen=cos g = siny. So¢ + 1 = S0, whence

1,11 »
+ e g -
ra 7 h-

Since pis rational, s0 s g, and, whatever the order of he ariginal chain,
we can construct an interlocking chain. Since we can interchange p and g
the only distinct integral solutions are p = 3,9 = Gand p = 4,9 = 4. In
both cases we can find any number of pairs of integral chains, and develop
froths in which every sphere has an integral bend.

If we invert any pair of inerlocked chains, the torus becomes 4 cyclide





[image: image14.png]of Dupin (Figure 1), which is a quariic surfuce (g). All the spheres touch it
along circles (the two sets of circles being orthogonal). The centres of the
links of each chain are coplanar, these planes being perpendicular.

FGURE 11 FIGURE 12

The 36 configuration: Soddy's hexlet ()

Take the Gchain @ [cy, Gz, .. o] and the 3chain s by, by, bl
Then r;:(A’+?1—r.r;+?:§)/(r.+n)» and ¢, = - 2(c: - ) ete.
Now put b, = $(e;—3+.03—22), ba= by +3-+ 4 md by= b, + A~ Or
sartwith by = (e + 38 — bib)/(br + b, thenput

bitbthi-2n  a=a+a+dh a=o+ds
c=btbth+2e,  c=q-a-3, G=c-la
Forany hexlet,

Cmare=bi bt by
Cita=ato=a+o=20b+b+ b

ctate=atate=3b+b+h)

6(b1+ by + by’ ~3(b} + b + 15).
Forintegral results, we may need to multiply all the bends by a scale factor.
We can regard the links in a 6-chain of circles as a cross-section of a 6-
chain of spheres, and build any mumber of interlocking 3-chains. If the
‘boundaries of the circular chain are f, and fy, then

20y + by + ) = 308 + ).
8(6 + 8 + B) = (8 + i) + 66

There are two special cases:

@ we can take a sphere comesponding 10 cither boundary circle, the two
other links being equal:

@) if he bends of the 6.chain re all postive, we can find @ 3-chain with
one plane link

For case (i), the boundaries are (g, $(5, + 36:). 18, + 38)); the other

solution having , and f; interchanged.





[image: image15.png]For case (ii), the non-zero boundaries are }(§, + f2) + 35

« The 6-chain [3, 6, 15, 21, 18, 9] of Figure 4 has boundaries 10
nd 2. Cae () gives imerlocking 3-chains [-2,7,7) and
10,1, 1) and ) gives [0, 6 + V5.6 — V15|
We can find £ 1nd u from 7+ 3¢ = cus + i, + 62+ 2 =
81 Taking 4= 9, u = 0 gives the interlocking chain [-2, 7. 7]
shownin Figure 12; with 1 = ~9,u = 0 weobiain [10, 1. 1]
Taking 7 = 6.4 = VIS gives [0, 6 + VI3, 6 ~ V3]

The 3-chain [2,2, 3] gives a? + 35 = 16. Taking a=f=2
sivesthe intrlocking chain 3, 1, 15, 11,3, 1)

The 44 configuration
With two intelocked -chiins, cach sphere touches s o the others.
We can start with a 4-chain of circles [cy, ¢3. €3, ¢ by, by), construct the
spheres having these s quatorial sections, and psce two squal spheres
Hby + bu) touching he -links: they will s touch b, and b,
« The chain [2, 4, 4, 2; 7, 1] (Figure 3) gives new spheres 3 and
3¢ the imerlocked chains, shown in Figre 13, are [2 4, 4 2]
1373
There are two other ways in which we can regard the configurion a5
o chuins: i such the centres of the four lnks in both chains e

coplanar, he planes being perpendicular. We can buse 2 general formula on
this medhod, but there s simpler and more sy mmetrical way.

The eight spheres form four non-touching pair thatcan be taken 2
Goazraz-fifiioy —az+a.
where a. fly. ad = smisly 2 = a4 fF + 7 + 5. One way of

describing tis configuration 4 2 pair of 4-chains i then
E-az-frtaz+flE-pz-bz+n:+dl

e Ifz =5a=20f=3y=423 = 5thechains are [5, 2, 5,
SI[1,0,9, 10] and the confguration is based upon Figure 5
Sull with Swecmmnkea=0pF=0y=138
giving [5, 5, 5, 5[4, -2, 6, 12] shown in Figure 14.
There are two symmeticl foms of the 4-3 configuration. In
one, six wnit spheres have their cenves at the verties of 4
regular ocahedron, one small sphere i in the middle, and one
large sphere sumounds them all This comes from = = 1,
W= =y = 0.0 = 3 The cight bends are (I, 1 LI L
1 12V, 1+v3. The other fomn has four equl touching
spheres. at the verices of a temahedron, wilh o smilar, but
s o menel, vl e midle” " Tle
@ =f=y=0=12= Vi ihe fou larger spheres have
bends V2 1 the smaller, 47 + 1.





[image: image16.png]« We can casily show that for every -4,

3(X bend)’ = 16 3 (bend?) and 5(% bend)’ = 128 3 (bend?).
the sums being over all eight spheres.

FIGURE 13 FIGURE 14

Froths

We can construct three-dimensional froths from  these  interlocked
chains. They contain regions holding an infinity of spheres cach touching
an infinity of the others; and we can ensure that every sphere has integral
bend. The methods are analogous to those we used for circks.

The 3-6 froth

Consider the sphees . b, by and 3 in any 3-6 configurstion, and
rename them a, . ¢ and . Togeber with ¢, o 3 (which we rename ¢ and
). hey fom & st offive spheres each touching the ther four at disinet
points. We know that o + 35°  be + ca+ ab, 2 = -+ b + c - d,
Ihd 6 = 2~ a~ b - c - d_Eliminating a nd f gives s e dree-
dimensional verson of Descares ol

M+ B+ Ced )= @ebrcrdeol

Taking this 1 & quadratic in ¢, we have ¢ + € = a+ b+ c + d, s
&=t 2ewhere = a+ bt de e Soif ab.c.dmd e
fnegers, s new sphere ¢ touching (a. b, . d) i iegral. Smilaly, one
ouching (5 c. d. e has bend o ~ 1 — 2o, ineger; and s0.on. The new
sets such s {d. b, c. d. e} lead 1o new integral spheres touching any four of
them. Clesry we can continue this proces indetniely.

« Ifa. b, c and d are unit spheres whase centes are the vertices of
2 regular temabedron, the bends of the inemal and exteral
tangent spheres re the roots o £ — 4 — 2 = O,ie.2 £ 46.
Figure 15 shows the start of a froth based on Figure 12. The
new spheres have bends 7, 19, 34,37, 25 and 10,

Figure 16 is developed from (22.~11(33,3333] and contains
176 integral spheres that al touch an outer it sphere (not
shown). The bends (and mmbers) are 202, 36). 5(12), 6(12),





[image: image17.png]8(12), 924), 11(36), 12(24), 14(12), 15(12) and 1704). There
are nane of the form 3% + 1

FGURE 1S

Thed~4 froth

There are four non-touching pairs of spheres in @ 4-4 configuration.
We can separate them (in cight different ways) into two quariets of mutually
touching spheres. If one quartet is (@, b, ¢, d),then the parameter = satisfies

2 -2a+brcrd)+a+ b+ I+ d =0
The ther root, 7, is @+ b+ +d >, giving a new quaret (d, ¥, ¢', ),
where o = 27~ a, etc. This fis in the space surrounded by (a, b, ¢ d).
the non-touching pairs being (2. 's b, s ¢, s . . This in wm gives.

e quaret, and we can continue indeinily. If we sart wih integrl
parameters . .7, 3 and . every new sphereis inegral

+ Figure 17 shows some extra quarees added o [4, 12, 6, 2][5, 5,
551 In the regions bounded by (2, 4. 5, 5) we have
2~ 24z + 70 = 0,502 = 5.or 7. The root $ takes us buck
1 (126,55, md 7 gives he new quaret (16,1099). The
quaret (-265.5) gives = = $ ar 9, leading 1o (20,12,13,13)
imscribed init
The cover illstrtion s developed from Figure 13 and contins
1702 integral spheres touching an evternal it sphere.  The
coondinates of cach cente are rational, being in his instance
imegral multples of the coresponding radius; and these
multiples satisfy similar relationships 1o those linking the
curvatures. The sections made by the vertical planes of
symmetry appear 1 be of two types: 4 -froth bascd on Fgore 3
and 4 3-froth based on Figure 1

The ten-bead necklace

In three-dimensional froths, the quaries of tangent spheres do not
totally enclose the regions in which we put the new spheres, unlike iples of
circle in a plane. Consequently the froth spils through the gaps. However,
when the different parts of the froth meet, the spheres touch rather than cut,





[image: image18.png]and there are o gaps or overlaps. Before [ eslised this, [ thought there
‘might be o three-dimensionsl froths, and | looked instead for counterpars
1o the enclosed regions in the plane. The toroidal egion berween two links
and the enclosing cyclid coukd perhaps contain a et of tangent pheres—a
ecklace. Inversion sgain simpliied the problem

With respect to the contact point of two links, they become parallel
planes; the cyclide, 3 torus sandwiched berween thems and the toroidal
Tegion becomes the space between the planes and ouside he torus.  Any
ecklace would then be a set of equl spheres touching the ouside of the
forus, s in Figure 18 (where the upper plane is removed). If the orginal
duin has orer p ad the necklice conmim g spheres,  then
Comecrp = 2+ sec gy where = 180°/q and ¢ = 180°/p. The anly
imegral solution (and, | suspect, the only rationsl solwion) s p = 5,
4 = 10, for which sec@ = V5 — Land cosecp = v5 + 1. Thus any 5-
chain s necklaces with ten beads: cach bead touches it two neighbours,
wo links and the cyclide. We can amange the intelocking chain, which has
onder 103, 50 that each bead also ouches ane of these spheres. Figure 19
hows a S.chain of equal spheres with the necklaces and the torus, which
s beon cur away. In the case Hlstrted, each necklace hus five pirs of
aqual beads. The middle pair—roughly, the top and botom beads —have
bends five times those of the links.  However, there i no chain with
ecklaces where every sphere s integral

FIGURE 17 FIGURE I8 FIGURE 19
Notes

a An carier paper [7] gives formulee for general chains of cirdles with
boundarie that might also touch or inersect. The fommulie are in ferms.
of the radif of the_boundarics and the distance between their centes.
The only ratonal Steiner chains considered there have al hree of these
mezsurements rational, and are @ subset o ous

See Courant and Robbins [2, Chap I, Part 1], Coxeter and Greitzer 4,
Chap 51 or Johnsan [8, Sects 63821, Durell [6, Chap X] and Russell
110, Chaps IX, X] are traditional texss. Of al hese only Russell (in an
appendi) gives the size and position of the inverse of @ circle
Inversion seems o be rarely used for metrical properics.

p. 244] mentions some properties. There is some thery in

Greitzer 4, Sect 5.8] and Johnson [8, Sects 158-164]

Coneter [3] siates and proves the cases p = 1 and p = 2, using
properties of 4-dimensional polyiopes. The proof in the present article
i based on that in 7],





[image: image19.png]The result on the sgquares of the bends, and is counterpart for spheres,
appear o be Soddy's conjectures. Coneter [3] gives  proof for space of
N dimensions. The result abou the cubes may be new:

Coneter 3] obuins some general properties of interlocking chains of
spheres nd related configurations by projecting spheres inscribed in the
cels of 4-dimensional polyiopes into 3 dimensional space. His paper
sives further references.

The cyclide also has an nfinite (cubic) form. Make a small hole in the
bulge and stetch the surfae to become 2 near-plane leaving the region
round the “handle’ almost unchanged. One such cyclide has. the
equation (8 + 87— 3)(2r - 1) + 167 = 0.

Soddy [12] discavered he hexlet znd our result (6). The whole of his
Dote s in verse. Morley [9] gives & proof of this result and states our
relation (7).
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