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The reformed Mathematics AS/A level Content (ref.1) for
first teaching in 2017 was published by the Department
for Education (England) in April 2016. The Content states
that reformed AS/A level specifications in Mathematics
must require students to demonstrate a wide range of
overarching knowledge and skills, and that these must
be applied, along with associated mathematical thinking
and understanding, across the whole of the detailed
Content, and that the three Overarching Themes:

e OT1 Mathematical argument, language and proof
e OT2 Mathematical problem solving

¢ OT3 Mathematical modelling

must permeate the Content.

In respect of the first Overarching Theme, three
specific aims and objectives required of the reformed
qualifications are that AS/A level specifications in
Mathematics must encourage students to:

e reason logically and recognize incorrect reasoning;
¢ generalize mathematically;
e construct mathematical proofs.

The Content pertinent to these objectives under OT1 is
set out below (in bold) and applies to both AS and A level
(except OT1.4, which is not in bold and applies to A level

only):

OT1 Mathematical argument, language and proof

Importantly, the intention of the reforms is most
definitely not to equate OT1 with ‘proof’ or to treat
‘proof’ as a separate teaching topic. The emphasis is
intended to be on students being able to know and use
correct mathematical language and argument across the
whole of the Content. Of course one way to encourage
this is through engagement with formal proof. As such,
it is important that students are exposed to a range of
examples, particularly ones requiring little more than
higher level GCSE, to help with their development of
knowledge, skills and understanding associated with
OT1. This will enable students to make progress in
demonstrating the overarching knowledge and skills,
which are then to be applied, along with associated
mathematical thinking and understanding, across the
whole of the detailed Content as stated in ref. 1, for
example to calculus, trigonometry, and so on.

This article provides a range of examples involving
different types of proof and mathematical argument,
with the aim of supporting students taking their first
steps into this vital overarching theme in mathematics.
Aside from learning about different techniques of proof,
and developing problem solving approaches, the main
purpose of the reforms is to encourage students to
develop logical thought, and to be able to provide clear
mathematical arguments in support of a result, using
correct mathematical notation and language. Again, this
is the primary purpose of OT1.

Before considering some examples, we note that the
relevant Detailed content statements in ref. 1 include
reference to 'proof’, as shown below, in which there is
explicit reference to different types of proof.

We see the ‘classic’ examples cited in the Detailed content:
proof of the ‘irrationality of \/5 " and ‘infinity of primes,,
but then ‘application to unfamiliar proofs’. While it is
this last phrase that will concern teachers and students,
hopefully providing some ideas of examples of what
might constitute 'unfamiliar proof’ might allay some of
the concerns.

Knowledge /Skill

0T1.1 Construct and present mathematical arguments through appropriate use of diagrams; sketching
graphs; logical deduction; precise statements involving correct use of symbols and connecting
language, including: constant, coefficient, expression, equation, function, identity, index, term,
variable.

0T1.2 Understand and use mathematical language and syntax as set out in the content.

OT1.3 Understand and use language and symbols associated with set theory, as set out in the content.
Apply to solutions of inequalities and probability.

0T1.4 Understand and use the definition of a function; domain and range of functions.

OT1.5 Comprehend and critique mathematical arguments, proofs and justifications of methods and
formulae, including those relating to applications of mathematics.

16 Mathematics in School, September 2017

The MA website www.m-a.org.uk



A Proof

Content

proof by exhaustion.

Disproof by counter-example.

application to unfamiliar proofs).

Al Understand and use the structure of mathematical proof, proceeding from given assumptions
through a series of logical steps to a conclusion; use methods of proof, including proof by deduction,

Proof by contradiction (including proof of the irrationality of \/E and the infinity of primes, and

Before we give examples for readers to use with their
students, possibly as a focus for discussion/exploration,
we include examples of each of four ‘methods of proof/
disproof’ as given in the Content statement above.

For some of the examples the following definitions are
required:

The set of natural numbers is denoted by N={1, 2, 3,...}.
The set of integers is denoted by Z = {0, 1, £2, +3,... }.
The set of positive integers is denoted by Z*={1, 2, 3,... }.
The set of rational numbers is denoted by

Q:{s:pEZ,qEZ*}.

The set of real numbers is denoted by R and can be
thought of as all numbers on a number line.

A real number that is not a rational number is called an
irrational number.

A prime number is a positive integer p > 1 that has no
positive integer factors other than 1 and p itself.

A square number is a number of the form n? where n € Z.
A cube number is a number of the form n3where n € Z.

1. Example of proof by deduction

Prove that for all n € Z, if n is odd, then n? is odd.
Proof

Let n be an odd integer, then n = 2k + 1 for some k € Z.
Therefore n? = (2k + 1)? = 4k?* + 4k+1 = 2(2k* + 2k) + 1.

Now, since k € Z we can write n? = 2m + 1, where
m = 2k? + 2k € Z, and hence n? is odd, as required.

2. Example of proof by exhaustion

Prove that every integer that is a perfect cube is either
a multiple of 9, or 1 less, or 1 more than a multiple of 9.

Proof

Each cube number is the cube of some integer n. Every
integer is either a multiple of 3 or is one less or two less
than a multiple of 3 since the maximum remainder when

n |-3 2 -1 0 1 2

dividing by 3 is 2. The set of integers can therefore be
divided into three non-overlapping cases which are
exhaustive.

Case 1: If n = 3m for some m € Z, then n® = (3m)3 = 27m?
= 9(3m3), which is a multiple of 9.

Case 2:Ifn=3m - 1 for some m € Z, then n® =(3m - 1)% =
27m3 -27m? +9m -1=9(3m?-3m? + m) - 1, which is 1
less than a multiple of 9.

Case 3:If n =3m - 2 for some m € Z, then n® = (3m - 2)3 =
27m3 -54m? + 36m - 8 =9(3m® - 6m? + 4m - 1)+1, which
is 1 more than a multiple of 9.

Therefore the result is true for all integers n, as required.

3. Example of disproof by counter-example

Disprove the statement that: for all n € Z, the integer
f(n) =n?-n+ 11is prime.

Proof

We disprove this statement by finding an example for
which the statement does not hold, which is called a
counter-example.

While f(n) is prime for some values of n as shown in
the Table, when n = 11, f(11) =112 - 11+ 11 =11 x 11,
and hence not prime, so that the statement is not true as
there exists an n € Z, namely n = 11, for which f(n) is not
prime.

This provides a counter-example to the statement, and
hence we have disproved the statement, as required.

4. Example of proof by contradiction

Prove that for all n € N, if 4" - 1 is prime, then n is odd.
Proof

We prove this by contradiction, as follows.

Suppose that this is not the case, i.e. that 4" - 1 is prime,
where n € N, and n is even.

3 4 5 6 7 8 9 10

fn) |23 17 13 11 11
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In this case, n = 2k for some k € N, and hence 4" - 1 = 4%-1
- (42 - 1 = (4% - 1)(4%+ 1).

However, since k € N, we have that both 4¥- 1, 4K+ 1 €N
and 4 - 1, 4k + 1 > 1, and hence 4" - 1 has at least two
factors that are greater than 1, which contradicts the fact
that 4" - 1 is prime.

Therefore our assumption that n is even is incorrect, and
hence n must be odd, as required.

Examples

Before starting these, recall Polya’s four-point plan for
solving any type of problem:

(i) understand the problem;
(ii) devise a plan;

(iii) execute the plan; and
(iv) look back.

In each case either prove or disprove (by finding a
counter-example) the given statement.

1. Foralln €N, ifnis odd, then n?is odd.

2. Foralln €N, ifn?is odd, then n is odd.

3. Forall n € N, n is the sum of squares of two natural
numbers.

4. The sum of two odd numbers is even.

The sum of two even numbers is even.

6. The sum of an even number and an odd number is

odd.

The product of two odd numbers is odd.

8. Forall n € N, if n is even, then 9n? + 6n is a multiple
of 12.

9. The sum of two consecutive odd numbers is equal to
the difference of two square numbers.

10. Any natural number greaterthan1 (so2,3,4,...) has
a prime factor.

11. The product of two consecutive integers is even.

12. There are infinitely many prime numbers.

13. For all positive real numbers a, b, c such that ab = ¢,
thena<Vcorb<+e.

14. For all n € Z, the integer f(n) = n?> - n + 11 is prime.

15. Forall m, n € Z, if m? + n?is even, then m + n is even.

16. For all n € N, the sum of n consecutive natural
numbers is:

(a) even if nis a multiple of 4;

vt

N

(b) odd if n is even but not a multiple of 4;

(c) divisible by n if n is odd.
17. If x is a real number such that x*-1 > 0, x # -2, then
eitherx>1or-2<x<-1. X+2
18. No positive real number a exists such thata + 1 <2.

19. No integer n exists such that 4n + 3 is a Sfuare
number.

20. For all non-negative real numbers g, b, ¢, if a® + b* = ¢?,
thena+bzc.

21. Foralln € Z, n(n + 1) is even.
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47.

48.

49,

50.

51.
52.

53.

For all real numbers x, y, 2% 2V = 2%,

For all n € Z, if n is odd, then n? is odd.

For all n € N, if 4" - 1 is prime, then n is odd.

For all m, n € Z, if mn is even, then either m or n is
even.

Foralln € N, if 2" - 1 is prime, then n is prime.

For all a € Q and all irrational numbers b, a + b is
irrational.

Ifa+b>100,then either a > 50 or b > 50.

For all a € Q, and all irrational numbers b, then ab is
irrational.

There is no largest even integer.

V2 ++/6 <+/15.

V6 -v2>1.

For all n € N, if n? is even, then n is even.

For all n € N, if n? is a multiple of 3, then n is a
multiple of 3.

Foralln €N, if n = m3 - m for some m € N, then n is
a multiple of 6.

If n, k are positive integers, then nk - n is always
divisible by k.

Between any two rational numbers there is another
rational number.

There exists a real number a such that a? = 2. (Hint:
Draw a right-angled triangle.)

If n € N there exists a real number a such that
a? = n. (Hint: Draw a circle of diameter n + 1 and
the perpendicular through a point on the diameter
which divides the diameter in the ration : 1.)

V2 is irrational.

There exists irrational numbers a, b such that a’ is

V2
rational. (Hint: Consider \/5 J)
Between any two real numbers there is an irrational
number.
V3 is irrational.
The product of two rational numbers is always
rational.
The product of two irrational numbers is always
irrational.
For all real numbers u, v, if 0 < u, v < 1, then
u+v

1+uv

<1.

V4 € Q is irrational. (Note: Va=2= % and so is

clearly rational! Your challenge is to attempt to prove
the original statement by trying to use the same
proof by contradiction argument that you would for
proving that V2 is irrational and identify where the
argument fails in this case as you hope it would do.)
Every integer that is a perfect cube is either a
multiple of 9, or 1 less, or 1 more than a multiple of 9.
For all real numbers a, b, ¢, if a + b + ¢ = 0, then
ab+bc+ca<0.

For all non-negative real numbers a, b, then

%(a+b)2\/£.

Foralln € Z, n?+ 3n + 7 is odd.

For all p € Q, p # 0, and all irrationals q, pq is
irrational.

For all n € N, n? - n is a multiple of 3.
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54. The square of any natural number is of the form 3k Similarly, when was the last time, and when is the next

or 3k + 1 for some k € N. time that three ‘prime years’ in a row have this property?

55. There are no natural numbers m, n for which The last time the latter occurred was just after Fermat
2_ 2= . .

m*-n®=1. died, and the next time the latter occurs there are three

successive occurrences of this. After this, the next time
‘prime years’ in a row have this property there are five in
a row. For four ‘prime years’ in a row with this property
we have to go back to the time of the Magna Carta!

This list is available via the link: www.personal.reading.
ac.uk/~smsglais/Examples-of-proof.pdf. Readers are
invited to contact the authors by email at p.glaister@
reading.ac.uk with further examples and these will then

be added to the list. Readers are advised not to add the last theorem to the
Finally, readers may be interested to note that 2017 list of examples above as the proof is certainly beyond A
is a prime number, and that 2017 = 92 + 442, the sum level!

of squares of two natural numbers. In fact, any prime

number of the form 4n + 1, where n € N, can always be References

expressed uniquely as the sum of squares of two natural

numbers. More generally, there is a theorem, originally 1. www.gov.uk/government/publications/gce-as-and-a-level-
written down by Fermat and subsequently proved by mathematics. Accessed January 12017.

Euler (ref.2), which states that all odd prime numbers 2. mathworld.wolfram.com/Fermats4nPlus1Theorem.html.
p (i.e. not including p = 2) can be expressed uniquely as Accessed January 12017.

the sum of squares of two natural numbers x, y € N, i.e.
p=x*+y? ifand only if p = 4n + 1 for some n € N.

The last year for which this occurred was 1997
(= 292 + 342%), and this was also true for the previous
‘prime year’, 1993 (= 122 + 432). Readers may wish to
determine the next ‘prime year’ for which this is true, as ] ] ] -

. . , Authors Elizabeth M. Glaister, Kendrick School, Reading;
well as the next time two consecutive ‘prime years’ have Paul Glaister, Department of Mathematics, University of

this property. All of these are in this century, but are still Reading, Reading.
e-mail: p.glaister@reading.ac.uk
some way off!
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These newly updated and thoroughly revised editions have
been completely rewritten for the 2017 specification. Keeping
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